Merge branch 'master' into lighthouse2

# Conflicts:
#	topics/light.py -> resolved
This commit is contained in:
Ben Hambrecht 2018-02-07 07:36:38 +01:00
commit 1e88bf3946
9 changed files with 213 additions and 100 deletions

View file

@ -67,10 +67,14 @@ class EquationSolver1d(GraphScene, ZoomedScene):
self.add(target_line_label)
def solveEquation(self):
leftBrace, rightBrace = xBraces = TexMobject("||")
leftBrace = TexMobject("[")
rightBrace = TexMobject("]")
xBraces = Group(leftBrace, rightBrace)
xBraces.stretch(2, 0)
downBrace, upBrace = yBraces = TexMobject("||")
downBrace = TexMobject("[")
upBrace = TexMobject("]")
yBraces = Group(downBrace, upBrace)
yBraces.stretch(2, 0)
yBraces.rotate(TAU/4)
@ -79,7 +83,7 @@ class EquationSolver1d(GraphScene, ZoomedScene):
upperX = self.initial_upper_x
upperY = self.func(upperX)
leftBrace.move_to(self.coords_to_point(lowerX, 0))
leftBrace.move_to(self.coords_to_point(lowerX, 0), aligned_edge = LEFT)
leftBraceLabel = DecimalNumber(lowerX)
leftBraceLabel.next_to(leftBrace, DOWN + LEFT, buff = SMALL_BUFF)
leftBraceLabelAnimation = ContinualChangingDecimal(leftBraceLabel,
@ -87,7 +91,7 @@ class EquationSolver1d(GraphScene, ZoomedScene):
tracked_mobject = leftBrace)
self.add(leftBraceLabelAnimation)
rightBrace.move_to(self.coords_to_point(upperX, 0))
rightBrace.move_to(self.coords_to_point(upperX, 0), aligned_edge = RIGHT)
rightBraceLabel = DecimalNumber(upperX)
rightBraceLabel.next_to(rightBrace, DOWN + RIGHT, buff = SMALL_BUFF)
rightBraceLabelAnimation = ContinualChangingDecimal(rightBraceLabel,
@ -95,7 +99,7 @@ class EquationSolver1d(GraphScene, ZoomedScene):
tracked_mobject = rightBrace)
self.add(rightBraceLabelAnimation)
downBrace.move_to(self.coords_to_point(0, lowerY))
downBrace.move_to(self.coords_to_point(0, lowerY), aligned_edge = DOWN)
downBraceLabel = DecimalNumber(lowerY)
downBraceLabel.next_to(downBrace, LEFT + DOWN, buff = SMALL_BUFF)
downBraceLabelAnimation = ContinualChangingDecimal(downBraceLabel,
@ -103,7 +107,7 @@ class EquationSolver1d(GraphScene, ZoomedScene):
tracked_mobject = downBrace)
self.add(downBraceLabelAnimation)
upBrace.move_to(self.coords_to_point(0, upperY))
upBrace.move_to(self.coords_to_point(0, upperY), aligned_edge = UP)
upBraceLabel = DecimalNumber(upperY)
upBraceLabel.next_to(upBrace, LEFT + UP, buff = SMALL_BUFF)
upBraceLabelAnimation = ContinualChangingDecimal(upBraceLabel,
@ -200,7 +204,7 @@ class EquationSolver1d(GraphScene, ZoomedScene):
self.drawGraph()
self.solveEquation()
colorslist = map(color_to_rgba, ["#FF0000", ORANGE, YELLOW, "#00FF00", "#0000FF", "#FF00FF"])
colorslist = map(color_to_rgba, ["#FF0000", "#FFFF00", "#00FF00", "#0000FF"])
def rev_to_rgba(alpha):
alpha = alpha % 1
@ -330,9 +334,7 @@ def point_func_from_complex_func(f):
test_map_func = point_func_from_complex_func(lambda c: c**2)
empty_animation = Animation(Mobject(), run_time = 0)
def EmptyAnimation():
return empty_animation
empty_animation = EmptyAnimation()
class WalkerAnimation(Animation):
CONFIG = {
@ -347,6 +349,8 @@ class WalkerAnimation(Animation):
self.rev_func = rev_func
self.coords_to_point = coords_to_point
self.compound_walker = VGroup()
self.show_arrows = show_arrows
base_walker = Dot().scale(5) # PiCreature().scale(0.8) #
self.compound_walker.walker = base_walker.scale(0.35).set_stroke(BLACK, 1.5) #PiCreature()
if show_arrows:
@ -365,7 +369,7 @@ class WalkerAnimation(Animation):
self.mobject.shift(cur_point - self.mobject.walker.get_center())
rev = self.rev_func(cur_coords)
self.mobject.walker.set_fill(rev_to_color(rev))
if show_arrows:
if self.show_arrows:
self.mobject.arrow.set_fill(rev_to_color(rev))
self.mobject.arrow.rotate(
rev * TAU,
@ -430,14 +434,23 @@ class ColorMappedByFuncScene(Scene):
CONFIG = {
"func" : lambda p : p,
"num_plane" : NumberPlane(),
"display_output_color_map" : False
"show_num_plane" : True,
"show_output" : False, # Not currently implemented; TODO
}
def construct(self):
display_func = self.func if not self.display_output_color_map else lambda p : p
def setup(self):
if self.show_output:
self.pos_func = self.func
else:
self.pos_func = lambda p : p
self.num_plane.fade()
self.add(self.num_plane)
def construct(self):
display_func = self.func if not self.show_output else lambda p : p
if self.show_num_plane:
self.num_plane.fade()
self.add(self.num_plane)
self.camera.set_background_from_func(
lambda (x, y): point_to_rgba(
display_func(
@ -449,11 +462,15 @@ class ColorMappedByFuncScene(Scene):
)
)
class ColorMappedByFuncStill(ColorMappedByFuncScene):
def construct(self):
ColorMappedByFuncScene.construct(self)
self.wait()
class PiWalker(ColorMappedByFuncScene):
CONFIG = {
"walk_coords" : [],
"step_run_time" : 1,
"show_arrows" : True
}
def construct(self):
@ -476,7 +493,7 @@ class PiWalker(ColorMappedByFuncScene):
coords_to_point = num_plane.coords_to_point,
rev_func = rev_func,
remover = (i < len(walk_coords) - 1),
show_arrows = self.show_arrows
show_arrows = not self.show_output
),
run_time = self.step_run_time)
@ -515,9 +532,7 @@ class PiWalkerCircle(PiWalker):
self.walk_coords = [r * np.array((np.cos(i * TAU/N), np.sin(i * TAU/N))) for i in range(N)]
PiWalker.setup(self)
# TODO: Perhaps restructure this to avoid using AnimationGroup, and instead
# use lists of animations or lists or other such data, to be merged and processed into parallel
# animations later
# TODO: Give drawn lines a bit of buffer, so that the rectangle's corners are filled in
class EquationSolver2d(ColorMappedByFuncScene):
CONFIG = {
"initial_lower_x" : -5.1,
@ -526,7 +541,8 @@ class EquationSolver2d(ColorMappedByFuncScene):
"initial_upper_y" : 3.1,
"num_iterations" : 5,
"num_checkpoints" : 10,
"display_in_parallel" : True
"display_in_parallel" : True,
"use_fancy_lines" : True,
# TODO: Consider adding a "find_all_roots" flag, which could be turned off
# to only explore one of the two candidate subrectangles when both are viable
}
@ -534,23 +550,32 @@ class EquationSolver2d(ColorMappedByFuncScene):
def construct(self):
ColorMappedByFuncScene.construct(self)
num_plane = self.num_plane
self.remove(num_plane)
background = self.camera.background
self.camera.init_background() # Clearing background
rev_func = lambda p : point_to_rev(self.func(p))
clockwise_rev_func = lambda p : -rev_func(p)
def Animate2dSolver(cur_depth, rect, dim_to_split):
def Animate2dSolver(cur_depth, rect, dim_to_split, sides_to_draw = [0, 1, 2, 3]):
print "Solver at depth: " + str(cur_depth)
if cur_depth >= self.num_iterations:
return EmptyAnimation()
return empty_animation
def draw_line_return_wind(start, end, start_wind, should_linger = False):
def draw_line_return_wind(start, end, start_wind, should_linger = False, draw_line = True):
alpha_winder = make_alpha_winder(clockwise_rev_func, start, end, self.num_checkpoints)
a0 = alpha_winder(0)
rebased_winder = lambda alpha: alpha_winder(alpha) - a0 + start_wind
thin_line = Line(num_plane.coords_to_point(*start), num_plane.coords_to_point(*end),
stroke_width = 2,
thick_line = Line(num_plane.coords_to_point(*start), num_plane.coords_to_point(*end),
stroke_width = 10,
color = RED)
if self.use_fancy_lines:
colored_line = BackgroundColoredVMobject(thick_line, background_image_file = None)
colored_line.set_background_array(background)
else:
colored_line = thick_line.set_stroke_with(4)
walker_anim = LinearWalker(
start_coords = start,
@ -566,14 +591,16 @@ class EquationSolver2d(ColorMappedByFuncScene):
else:
rate_func = None
opt_line_anim = ShowCreation(colored_line) if draw_line else empty_animation
line_draw_anim = AnimationGroup(
ShowCreation(thin_line),
opt_line_anim,
walker_anim,
rate_func = rate_func)
return (line_draw_anim, rebased_winder(1))
wind_so_far = 0
anim = EmptyAnimation()
anim = empty_animation
sides = [
rect.get_top(),
rect.get_right(),
@ -582,7 +609,8 @@ class EquationSolver2d(ColorMappedByFuncScene):
]
for (i, (start, end)) in enumerate(sides):
(next_anim, wind_so_far) = draw_line_return_wind(start, end, wind_so_far,
should_linger = i == len(sides) - 1)
should_linger = i == len(sides) - 1,
draw_line = i in sides_to_draw)
anim = Succession(anim, next_anim)
total_wind = round(wind_so_far)
@ -594,32 +622,36 @@ class EquationSolver2d(ColorMappedByFuncScene):
rect.get_bottom_right(),
rect.get_bottom_left()
]
points = [num_plane.coords_to_point(x, y) for (x, y) in coords]
points = np.array([num_plane.coords_to_point(x, y) for (x, y) in coords]) + IN
# TODO: Maybe use diagonal lines or something to fill in rectangles indicating
# their "Nothing here" status?
fill_rect = polygonObject = Polygon(*points, fill_opacity = 0.8, color = RED)
# Or draw a large X or something
fill_rect = polygonObject = Polygon(*points, fill_opacity = 0.8, color = GREY)
return Succession(anim, FadeIn(fill_rect))
else:
(sub_rect1, sub_rect2) = rect.splits_on_dim(dim_to_split)
sub_rects = [sub_rect1, sub_rect2]
if dim_to_split == 0:
sub_rect_and_sides = [(sub_rect1, 1), (sub_rect2, 3)]
else:
sub_rect_and_sides = [(sub_rect1, 2), (sub_rect2, 0)]
sub_anims = [
Animate2dSolver(
cur_depth = cur_depth + 1,
rect = sub_rect,
dim_to_split = 1 - dim_to_split
dim_to_split = 1 - dim_to_split,
sides_to_draw = [side_to_draw]
)
for sub_rect in sub_rects
for (sub_rect, side_to_draw) in sub_rect_and_sides
]
mid_line_coords = rect.split_line_on_dim(dim_to_split)
mid_line_points = [num_plane.coords_to_point(x, y) for (x, y) in mid_line_coords]
mid_line = DashedLine(*mid_line_points) # TODO: Have this match rectangle line style, apart from dashes and thin-ness?
if len(sub_anims) > 0:
if self.display_in_parallel:
recursive_anim = AnimationGroup(*sub_anims)
else:
recursive_anim = Succession(*sub_anims)
# TODO: Have this match rectangle line style, apart from dashes and thin-ness?
# Though there is also informational value in seeing the dashed line separately from rectangle lines
mid_line = DashedLine(*mid_line_points)
if self.display_in_parallel:
recursive_anim = AnimationGroup(*sub_anims)
else:
recursive_anim = empty_animation # Have to do this because Succession doesn't currently handle empty animations
recursive_anim = Succession(*sub_anims)
return Succession(anim,
ShowCreation(mid_line),
recursive_anim
@ -780,7 +812,7 @@ class FirstSqrtScene(EquationSolver1d):
"targetY" : 2,
"initial_lower_x" : 1,
"initial_upper_x" : 2,
"num_iterations" : 10,
"num_iterations" : 3,
"iteration_at_which_to_start_zoom" : 3,
"graph_label" : "y = x^2",
"show_target_line" : True,
@ -1096,8 +1128,8 @@ class LoopSplitSceneMapped(LoopSplitScene):
class FundThmAlg(EquationSolver2d):
CONFIG = {
"func" : plane_poly_with_roots((1, 2), (-1, 1.5), (-1, 1.5)),
"num_iterations" : 4,
"display_in_parallel" : False
"num_iterations" : 5,
"display_in_parallel" : True
}
# TODO: Borsuk-Ulam visuals
@ -1159,11 +1191,23 @@ class DiffOdometer(OdometerScene):
####################
# Random test scenes and test functions go here:
def rect_to_circle((x, y, z)):
size = np.sqrt(x**2 + y**2)
max_abs_size = max(abs(x), abs(y))
return fdiv(np.array((x, y, z)) * max_abs_size, size)
class MapPiWalkerRect(PiWalkerRect):
CONFIG = {
"camera_class" : MappingCamera,
"camera_config" : {"mapping_func" : test_map_func},
"camera_config" : {"mapping_func" : rect_to_circle},
"display_output_color_map" : True
}
class ShowBack(PiWalkerRect):
CONFIG = {
"func" : plane_poly_with_roots((1, 2), (-1, 1.5), (-1, 1.5))
}
# FIN

View file

@ -22,6 +22,9 @@ class Animation(object):
#one_at_a_time, all_at_once
"submobject_mode" : "all_at_once",
"lag_factor" : 2,
# Used by EmptyAnimation to announce itself ignorable
# in Successions and AnimationGroups
"empty" : False
}
def __init__(self, mobject, **kwargs):
mobject = instantiate(mobject)

View file

@ -403,7 +403,7 @@ class Succession(Animation):
for anim in animations:
anim.update(0)
animations = filter (lambda x : x.run_time != 0, animations)
animations = filter (lambda x : not(x.empty), animations)
self.run_times = [anim.run_time for anim in animations]
if "run_time" in kwargs:
@ -411,6 +411,8 @@ class Succession(Animation):
else:
run_time = sum(self.run_times)
self.num_anims = len(animations)
if self.num_anims == 0:
self.empty = True
self.animations = animations
#Have to keep track of this run_time, because Scene.play
#might very well mess with it.
@ -439,10 +441,10 @@ class Succession(Animation):
Animation.__init__(self, self.mobject, run_time = run_time, **kwargs)
# Beware: This does NOT take care of updating the subanimation to 0
# Beware: This does NOT take care of calling update(0) on the subanimation.
# This was important to avoid a pernicious possibility in which subanimations were called
# with update(0) twice, which could in turn call a sub-Succession with update(0) four times,
# continuing exponentially
# continuing exponentially.
def jump_to_start_of_anim(self, index):
if index != self.current_anim_index:
self.mobject.remove(*self.mobject.submobjects) # Should probably have a cleaner "remove_all" method...
@ -485,8 +487,14 @@ class AnimationGroup(Animation):
}
def __init__(self, *sub_anims, **kwargs):
digest_config(self, kwargs, locals())
sync_animation_run_times_and_rate_funcs(*sub_anims, **kwargs)
self.run_time = max([a.run_time for a in sub_anims])
sub_anims = filter (lambda x : not(x.empty), sub_anims)
if len(sub_anims) == 0:
self.empty = True
self.run_time = 0
else:
# Should really make copies of animations, instead of messing with originals...
sync_animation_run_times_and_rate_funcs(*sub_anims, **kwargs)
self.run_time = max([a.run_time for a in sub_anims])
everything = Mobject(*[a.mobject for a in sub_anims])
Animation.__init__(self, everything, **kwargs)
@ -497,3 +505,12 @@ class AnimationGroup(Animation):
def clean_up(self, *args, **kwargs):
for anim in self.sub_anims:
anim.clean_up(*args, **kwargs)
class EmptyAnimation(Animation):
CONFIG = {
"run_time" : 0,
"empty" : True
}
def __init__(self, *args, **kwargs):
return Animation.__init__(self, Group(), *args, **kwargs)

View file

@ -99,7 +99,7 @@ class Camera(object):
def set_background(self, pixel_array, convert_from_floats = False):
self.background = self.convert_pixel_array(pixel_array, convert_from_floats)
def set_background_from_func(self, coords_to_colors_func):
def make_background_from_func(self, coords_to_colors_func):
"""
Sets background by using coords_to_colors_func to determine each pixel's color. Each input
to coords_to_colors_func is an (x, y) pair in space (in ordinary space coordinates; not
@ -114,9 +114,10 @@ class Camera(object):
2,
coords
)
self.set_background(new_background, convert_from_floats = True)
return self.convert_pixel_array(new_background, convert_from_floats = True)
print "Ending set_background_from_func"
def set_background_from_func(self, coords_to_colors_func):
self.set_background(self.make_background_from_func(coords_to_colors_func))
def reset(self):
self.set_pixel_array(self.background)
@ -140,7 +141,8 @@ class Camera(object):
self, mobjects,
include_submobjects = True,
excluded_mobjects = None,
z_buff_func = lambda m : m.get_center()[2]
#Round z coordinate to nearest hundredth when comparring
z_buff_func = lambda m : np.round(m.get_center()[2], 2)
):
if include_submobjects:
mobjects = self.extract_mobject_family_members(
@ -152,6 +154,9 @@ class Camera(object):
)
mobjects = list_difference_update(mobjects, all_excluded)
# Should perhaps think about what happens here when include_submobjects is False,
# (for now, the onus is then on the caller to ensure this is handled correctly by
# passing us an appropriately pre-flattened list of mobjects if need be)
return sorted(mobjects, lambda a, b: cmp(z_buff_func(a), z_buff_func(b)))
def capture_mobject(self, mobject, **kwargs):
@ -497,7 +502,8 @@ class MovingCamera(Camera):
0 if self.aligned_dimension == "height" else 1
)
# TODO: Add an attribute to mobjects under which they can specify that they should just
# map their centers but remain otherwise undistorted (useful for labels, etc.)
class MappingCamera(Camera):
CONFIG = {
"mapping_func" : lambda p : p,

View file

@ -60,6 +60,7 @@ LEFT_SIDE = SPACE_WIDTH*LEFT
RIGHT_SIDE = SPACE_WIDTH*RIGHT
TAU = 2*np.pi
DEGREES = TAU/360
# Change this to point to where you want
# animation files to output

View file

@ -199,14 +199,16 @@ def bezier(points):
def remove_list_redundancies(l):
"""
Used instead of list(set(l)) to maintain order
Keeps the last occurance of each element
"""
result = []
reversed_result = []
used = set()
for x in l:
for x in reversed(l):
if not x in used:
result.append(x)
reversed_result.append(x)
used.add(x)
return result
reversed_result.reverse()
return reversed_result
def list_update(l1, l2):
"""
@ -544,12 +546,16 @@ def wiggle(t, wiggles = 2):
def squish_rate_func(func, a = 0.4, b = 0.6):
def result(t):
if a == b:
return a
if t < a:
return func(0)
elif t > b:
return func(1)
else:
return func((t-a)/(b-a))
return result
# Stylistically, should this take parameters (with default values)?
@ -649,8 +655,8 @@ def angle_between_vectors(v1, v2):
return np.arccos(np.dot(v1,v2)/(l1*l2))
def project_along_vector(point, vector):
matrix = np.eye(3) - np.outer(vector,vector)
return np.dot(point,matrix.T)
matrix = np.identity(3) - np.outer(vector, vector)
return np.dot(point, matrix.T)
def concatenate_lists(*list_of_lists):
return [item for l in list_of_lists for item in l]

View file

@ -459,7 +459,8 @@ class VectorizedPoint(VMobject):
class BackgroundColoredVMobject(VMobject):
CONFIG = {
"background_image" : "color_background",
# Can be set to None, using set_background_array to initialize instead
"background_image_file" : "color_background",
"stroke_color" : WHITE,
"fill_color" : WHITE,
}
@ -475,10 +476,14 @@ class BackgroundColoredVMobject(VMobject):
for submob in vmobject.submobjects:
self.add(BackgroundColoredVMobject(submob, **kwargs))
#Initialize background array
path = get_full_raster_image_path(self.background_image)
image = Image.open(path)
self.background_array = np.array(image)
if self.background_image_file != None:
#Initialize background array
path = get_full_raster_image_path(self.background_image_file)
image = Image.open(path)
self.set_background_array(np.array(image))
def set_background_array(self, background_array):
self.background_array = background_array
def resize_background_array(self, new_width, new_height, mode = "RGBA"):
image = Image.fromarray(self.background_array, mode = mode)

View file

@ -42,14 +42,16 @@ inverse_quadratic = lambda maxint,scale,cutoff: inverse_power_law(maxint,scale,c
# Note: Overall, this class seems perfectly reasonable to me, the main
# thing to be wary of is that calling self.add(submob) puts that submob
# at the end of the submobjects list, and hence on top of everything else
# which is why the shadow might sometimes end up behind the spotlight
class LightSource(VMobject):
# combines:
# a lighthouse
# an ambient light
# a spotlight
# and a shadow
CONFIG = {
"source_point": ORIGIN,
"color": LIGHT_COLOR,
@ -115,6 +117,8 @@ class LightSource(VMobject):
if self.has_screen():
self.spotlight.screen = new_screen
else:
# Note: See below
# index = self.submobjects.index(self.spotlight)
self.remove(self.spotlight)
self.spotlight = Spotlight(
source_point = self.source_point,
@ -124,6 +128,13 @@ class LightSource(VMobject):
screen = new_screen
)
self.spotlight.move_source_to(self.source_point)
# Note: This line will make spotlight show up at the end
# of the submojects list, which can make it show up on
# top of the shadow. To make it show up in the
# same spot, you could try the following line,
# where "index" is what I defined above:
# self.submobjects.insert(index, self.spotlight)
self.add(self.spotlight)
# in any case
@ -133,9 +144,12 @@ class LightSource(VMobject):
def move_source_to(self,point):
apoint = np.array(point)
v = apoint - self.source_point
# Note: As discussed, things stand to behave better if source
# point is a submobject, so that it automatically interpolates
# during an animation, and other updates can be defined wrt
# that source point's location
self.source_point = apoint
self.lighthouse.next_to(apoint,DOWN,buff = 0)
self.ambient_light.move_source_to(apoint)
@ -143,12 +157,6 @@ class LightSource(VMobject):
self.spotlight.move_source_to(apoint)
self.update()
return self
def set_radius(self,new_radius):
self.radius = new_radius
@ -170,12 +178,13 @@ class LightSource(VMobject):
projected_screen_points.append(self.spotlight.project(point))
projected_source = project_along_vector(self.source_point,self.spotlight.projection_direction())
projected_point_cloud_3d = np.append(projected_screen_points,
np.reshape(projected_source,(1,3)),axis = 0)
projected_point_cloud_3d = np.append(
projected_screen_points,
np.reshape(projected_source,(1,3)),
axis = 0
)
rotation_matrix = z_to_vector(self.spotlight.projection_direction())
back_rotation_matrix = rotation_matrix.T # i. e. its inverse
@ -222,6 +231,9 @@ class LightSource(VMobject):
new_anchors = np.append(new_anchors,anchors[index:],axis = 0)
self.shadow.set_points_as_corners(new_anchors)
# Note: Theoretically this should not be necessary as long as we make
# sure the shadow shows up after the spotlight in the submobjects list.
#
# shift it closer to the camera so it is in front of the spotlight
self.shadow.shift(1e-5*self.spotlight.projection_direction())
self.shadow.mark_paths_closed = True
@ -292,6 +304,10 @@ class AmbientLight(VMobject):
# in theory, this method is only called once, right?
# so removing submobs shd not be necessary
#
# Note: Usually, yes, it is only called within Mobject.__init__,
# but there is no strong guarantee of that, and you may want certain
# update functions to regenerate points here and there.
for submob in self.submobjects:
self.remove(submob)
@ -312,7 +328,7 @@ class AmbientLight(VMobject):
def move_source_to(self,point):
# Note: Best to rewrite in terms of VectorizedPoint source_point
v = np.array(point) - self.source_point
self.source_point = np.array(point)
self.shift(v)
@ -347,6 +363,10 @@ class Spotlight(VMobject):
}
def projection_direction(self):
# Note: This seems reasonable, though for it to work you'd
# need to be sure that any 3d scene including a spotlight
# somewhere assigns that spotlights "camera" attribute
# to be the camera associated with that scene.
if self.camera == None:
return OUT
else:
@ -375,6 +395,10 @@ class Spotlight(VMobject):
def new_sector(self,r,dr,lower_angle,upper_angle):
# Note: I'm not looking _too_ closely at the implementation
# of these updates based on viewing angles and such. It seems to
# behave as intended, but let me know if you'd like more thorough
# scrutiny
alpha = self.max_opacity * self.opacity_function(r)
annular_sector = AnnularSector(
@ -466,13 +490,12 @@ class Spotlight(VMobject):
def dimming(self,new_alpha):
old_alpha = self.max_opacity
self.max_opacity = new_alpha
for submob in self.submobjects:
# Note: Maybe it'd be best to have a Shadow class so that the
# type can be checked directly?
if type(submob) != AnnularSector:
# it's the shadow, don't dim it
continue
@ -497,6 +520,14 @@ class Spotlight(VMobject):
submob.set_fill(opacity = alpha)
# Note: Stylistically, I typically keep all of the implementation for an
# update inside the relevant Animation or ContinualAnimation, rather than
# in the mobject. Things are fine the way you've done it, but sometimes
# I personally like a nice conceptual divide between all the things that
# determine how the mobject is displayed in a single moment (implement in
# the mobject's class itself) and all the things determining how that changes.
#
# Up to you though.
class ScreenTracker(ContinualAnimation):

View file

@ -83,22 +83,22 @@ class ThreeDCamera(CameraWithPerspective):
*self.get_spherical_coords()
)
def z_cmp(*vmobs):
#Compare to three dimensional mobjects based on
#how close they are to the camera
return cmp(*[
-np.linalg.norm(vm.get_center()-camera_point)
for vm in vmobs
])
# three_d_status = map(should_shade_in_3d, vmobs)
# has_points = [vm.get_num_points() > 0 for vm in vmobs]
# if all(three_d_status) and all(has_points):
# cmp_vect = self.get_unit_normal_vect(vmobs[1])
# return cmp(*[
# np.dot(vm.get_center(), cmp_vect)
# for vm in vmobs
# ])
# else:
# return 0
# Compare to three dimensional mobjects based on
# how close they are to the camera
# return cmp(*[
# -np.linalg.norm(vm.get_center()-camera_point)
# for vm in vmobs
# ])
three_d_status = map(should_shade_in_3d, vmobs)
has_points = [vm.get_num_points() > 0 for vm in vmobs]
if all(three_d_status) and all(has_points):
cmp_vect = self.get_unit_normal_vect(vmobs[1])
return cmp(*[
np.dot(vm.get_center(), cmp_vect)
for vm in vmobs
])
else:
return 0
Camera.display_multiple_vectorized_mobjects(
self, sorted(vmobjects, cmp = z_cmp)
)