3b1b-manim/camera.py

357 lines
12 KiB
Python
Raw Normal View History

import numpy as np
import itertools as it
import os
2016-04-17 12:59:53 -07:00
from PIL import Image
from colour import Color
2016-04-09 20:03:57 -07:00
import aggdraw
from helpers import *
2017-09-18 17:15:49 -07:00
from mobject import PMobject, VMobject, ImageMobject
class Camera(object):
2016-02-27 16:32:53 -08:00
CONFIG = {
2017-06-20 14:05:48 -07:00
"background_image" : None,
"pixel_shape" : (DEFAULT_HEIGHT, DEFAULT_WIDTH),
#this will be resized to match pixel_shape
"space_shape" : (SPACE_HEIGHT, SPACE_WIDTH),
"space_center" : ORIGIN,
"background_color" : BLACK,
#Points in vectorized mobjects with norm greater
#than this value will be rescaled.
2017-09-05 10:21:36 -07:00
"max_allowable_norm" : 2*SPACE_WIDTH,
"image_mode" : "RGBA",
"n_rgb_coords" : 4,
}
def __init__(self, background = None, **kwargs):
digest_config(self, kwargs, locals())
self.init_background()
self.resize_space_shape()
self.reset()
def resize_space_shape(self, fixed_dimension = 0):
"""
Changes space_shape to match the aspect ratio
of pixel_shape, where fixed_dimension determines
whether space_shape[0] (height) or space_shape[1] (width)
remains fixed while the other changes accordingly.
"""
aspect_ratio = float(self.pixel_shape[1])/self.pixel_shape[0]
space_height, space_width = self.space_shape
if fixed_dimension == 0:
space_width = aspect_ratio*space_height
else:
space_height = space_width/aspect_ratio
self.space_shape = (space_height, space_width)
def init_background(self):
2017-06-20 14:05:48 -07:00
if self.background_image is not None:
path = get_full_image_path(self.background_image)
image = Image.open(path).convert(self.image_mode)
2017-06-20 14:05:48 -07:00
height, width = self.pixel_shape
#TODO, how to gracefully handle backgrounds
#with different sizes?
self.background = np.array(image)[:height, :width]
else:
background_rgba = color_to_int_rgba(
self.background_color, alpha = 0
)
self.background = np.zeros(
list(self.pixel_shape)+[self.n_rgb_coords],
dtype = 'uint8'
)
self.background[:,:] = background_rgba
def get_image(self):
return np.array(self.pixel_array)
def set_image(self, pixel_array):
self.pixel_array = np.array(pixel_array)
2016-11-23 17:50:25 -08:00
def set_background(self, pixel_array):
self.background = np.array(pixel_array)
def reset(self):
self.set_image(np.array(self.background))
def capture_mobject(self, mobject):
return self.capture_mobjects([mobject])
2016-04-17 00:31:38 -07:00
def capture_mobjects(self, mobjects, include_submobjects = True):
if include_submobjects:
2016-02-27 18:50:33 -08:00
mobjects = it.chain(*[
mob.family_members_with_points()
for mob in mobjects
2016-02-27 18:50:33 -08:00
])
2016-04-17 12:59:53 -07:00
vmobjects = []
for mobject in mobjects:
2016-04-14 19:30:47 -07:00
if isinstance(mobject, VMobject):
2016-04-17 12:59:53 -07:00
vmobjects.append(mobject)
2016-04-14 19:30:47 -07:00
elif isinstance(mobject, PMobject):
self.display_multiple_vectorized_mobjects(vmobjects)
vmobjects = []
2016-04-09 20:03:57 -07:00
self.display_point_cloud(
mobject.points, mobject.rgbas,
self.adjusted_thickness(mobject.stroke_width)
)
2017-09-18 17:15:49 -07:00
elif isinstance(mobject, ImageMobject):
self.display_image_mobject(mobject)
else:
raise Exception("Unknown mobject type: " + type(mobject))
#TODO, more? Call out if it's unknown?
self.display_multiple_vectorized_mobjects(vmobjects)
def display_multiple_vectorized_mobjects(self, vmobjects):
if len(vmobjects) == 0:
return
#More efficient to bundle together in one "canvas"
image = Image.fromarray(self.pixel_array, mode = self.image_mode)
2016-04-17 12:59:53 -07:00
canvas = aggdraw.Draw(image)
for vmobject in vmobjects:
self.display_vectorized(vmobject, canvas)
canvas.flush()
2017-05-31 12:19:57 -07:00
self.pixel_array[:,:] = image
2016-04-09 20:03:57 -07:00
2016-04-17 12:59:53 -07:00
def display_vectorized(self, vmobject, canvas):
2016-04-14 19:30:47 -07:00
if vmobject.is_subpath:
2016-04-12 21:57:53 -07:00
#Subpath vectorized mobjects are taken care
#of by their parent
return
2016-04-14 19:30:47 -07:00
pen, fill = self.get_pen_and_fill(vmobject)
pathstring = self.get_pathstring(vmobject)
symbol = aggdraw.Symbol(pathstring)
canvas.symbol((0, 0), symbol, pen, fill)
2016-04-17 12:59:53 -07:00
2016-04-14 19:30:47 -07:00
def get_pen_and_fill(self, vmobject):
2016-04-09 20:03:57 -07:00
pen = aggdraw.Pen(
2017-02-02 15:36:24 -08:00
self.get_stroke_color(vmobject).get_hex_l(),
2016-04-23 23:36:05 -07:00
max(vmobject.stroke_width, 0)
2016-04-09 20:03:57 -07:00
)
fill = aggdraw.Brush(
2017-02-02 15:36:24 -08:00
self.get_fill_color(vmobject).get_hex_l(),
2016-04-14 19:30:47 -07:00
opacity = int(255*vmobject.get_fill_opacity())
2016-04-09 20:03:57 -07:00
)
return (pen, fill)
2017-02-02 15:36:24 -08:00
def get_stroke_color(self, vmobject):
return vmobject.get_stroke_color()
def get_fill_color(self, vmobject):
return vmobject.get_fill_color()
2016-04-14 19:30:47 -07:00
def get_pathstring(self, vmobject):
2016-04-12 21:57:53 -07:00
result = ""
2016-04-17 12:59:53 -07:00
for mob in [vmobject]+vmobject.get_subpath_mobjects():
2016-04-12 21:57:53 -07:00
points = mob.points
# points = self.adjust_out_of_range_points(points)
if len(points) == 0:
continue
2016-11-11 11:18:41 -08:00
points = self.align_points_to_camera(points)
2016-04-12 21:57:53 -07:00
coords = self.points_to_pixel_coords(points)
start = "M%d %d"%tuple(coords[0])
#(handle1, handle2, anchor) tripletes
triplets = zip(*[
coords[i+1::3]
for i in range(3)
])
cubics = [
"C" + " ".join(map(str, it.chain(*triplet)))
for triplet in triplets
]
2016-04-17 00:31:38 -07:00
end = "Z" if vmobject.mark_paths_closed else ""
result += " ".join([start] + cubics + [end])
2016-04-12 21:57:53 -07:00
return result
2016-04-09 20:03:57 -07:00
def display_point_cloud(self, points, rgbas, thickness):
if len(points) == 0:
return
points = self.align_points_to_camera(points)
pixel_coords = self.points_to_pixel_coords(points)
pixel_coords = self.thickened_coordinates(
pixel_coords, thickness
)
rgb_len = self.pixel_array.shape[2]
rgbas = (255*rgbas).astype('uint8')
target_len = len(pixel_coords)
factor = target_len/len(rgbas)
rgbas = np.array([rgbas]*factor).reshape((target_len, rgb_len))
on_screen_indices = self.on_screen_pixels(pixel_coords)
pixel_coords = pixel_coords[on_screen_indices]
rgbas = rgbas[on_screen_indices]
ph, pw = self.pixel_shape
flattener = np.array([1, pw], dtype = 'int')
flattener = flattener.reshape((2, 1))
indices = np.dot(pixel_coords, flattener)[:,0]
indices = indices.astype('int')
new_pa = self.pixel_array.reshape((ph*pw, rgb_len))
new_pa[indices] = rgbas
self.pixel_array = new_pa.reshape((ph, pw, rgb_len))
2017-09-18 17:15:49 -07:00
def display_image_mobject(self, image_mobject):
corner_coords = self.points_to_pixel_coords(image_mobject.points)
ul_coords, ur_coords, dl_coords = corner_coords
right_vect = ur_coords - ul_coords
down_vect = dl_coords - ul_coords
impa = image_mobject.pixel_array
oh, ow = self.pixel_array.shape[:2] #Outer width and height
ih, iw = impa.shape[:2] #inner with and height
rgb_len = self.pixel_array.shape[2]
# List of all coordinates of pixels, given as (x, y),
# which matches the return type of points_to_pixel_coords,
# even though np.array indexing naturally happens as (y, x)
all_pixel_coords = np.zeros((oh*ow, 2), dtype = 'int')
a = np.arange(oh*ow, dtype = 'int')
all_pixel_coords[:,0] = a%ow
all_pixel_coords[:,1] = a/ow
recentered_coords = all_pixel_coords - ul_coords
coord_norms = np.linalg.norm(recentered_coords, axis = 1)
with np.errstate(divide = 'ignore'):
2017-09-18 17:15:49 -07:00
ix_coords, iy_coords = [
np.divide(
dim*np.dot(recentered_coords, vect),
np.dot(vect, vect),
)
for vect, dim in (right_vect, iw), (down_vect, ih)
]
to_change = reduce(op.and_, [
ix_coords >= 0, ix_coords < iw,
iy_coords >= 0, iy_coords < ih,
])
n_to_change = np.sum(to_change)
inner_flat_coords = iw*iy_coords[to_change] + ix_coords[to_change]
flat_impa = impa.reshape((iw*ih, rgb_len))
target_rgbas = flat_impa[inner_flat_coords, :]
image = np.zeros((ow*oh, rgb_len), dtype = 'uint8')
image[to_change] = target_rgbas
image = image.reshape((oh, ow, rgb_len))
self.overlay_rgba_array(image)
def overlay_rgba_array(self, arr):
""" Overlays arr onto self.pixel_array with relevant alphas"""
bg, fg = self.pixel_array/255.0, arr/255.0
A = 1 - (1 - bg[:,:,3])*(1 - fg[:,:,3])
alpha_sum = bg[:,:,3] + fg[:,:,3]
for i in range(3):
with np.errstate(divide = 'ignore', invalid='ignore'):
bg[:,:,i] = reduce(op.add, [
np.divide(arr[:,:,i]*arr[:,:,3], alpha_sum)
for arr in fg, bg
])
bg[:,:,3] = A
self.pixel_array = (255*bg).astype('uint8')
2017-09-18 17:15:49 -07:00
def align_points_to_camera(self, points):
## This is where projection should live
return points - self.space_center
def adjust_out_of_range_points(self, points):
if not np.any(points > self.max_allowable_norm):
return points
norms = np.apply_along_axis(np.linalg.norm, 1, points)
violator_indices = norms > self.max_allowable_norm
violators = points[violator_indices,:]
violator_norms = norms[violator_indices]
reshaped_norms = np.repeat(
violator_norms.reshape((len(violator_norms), 1)),
points.shape[1], 1
)
rescaled = self.max_allowable_norm * violators / reshaped_norms
points[violator_indices] = rescaled
return points
def points_to_pixel_coords(self, points):
result = np.zeros((len(points), 2))
ph, pw = self.pixel_shape
sh, sw = self.space_shape
width_mult = pw/sw/2
width_add = pw/2
height_mult = ph/sh/2
height_add = ph/2
#Flip on y-axis as you go
height_mult *= -1
result[:,0] = points[:,0]*width_mult + width_add
result[:,1] = points[:,1]*height_mult + height_add
return result.astype('int')
def on_screen_pixels(self, pixel_coords):
return reduce(op.and_, [
pixel_coords[:,0] >= 0,
pixel_coords[:,0] < self.pixel_shape[1],
pixel_coords[:,1] >= 0,
pixel_coords[:,1] < self.pixel_shape[0],
])
def adjusted_thickness(self, thickness):
2016-03-07 19:07:00 -08:00
big_shape = PRODUCTION_QUALITY_CAMERA_CONFIG["pixel_shape"]
factor = sum(big_shape)/sum(self.pixel_shape)
return 1 + (thickness-1)/factor
def get_thickening_nudges(self, thickness):
_range = range(-thickness/2+1, thickness/2+1)
return np.array(
list(it.product([0], _range))+
list(it.product(_range, [0]))
)
def thickened_coordinates(self, pixel_coords, thickness):
nudges = self.get_thickening_nudges(thickness)
pixel_coords = np.array([
pixel_coords + nudge
for nudge in nudges
])
size = pixel_coords.size
return pixel_coords.reshape((size/2, 2))
class MovingCamera(Camera):
"""
Stays in line with the height, width and position
of a given mobject
"""
2016-02-27 16:32:53 -08:00
CONFIG = {
2016-02-27 16:29:11 -08:00
"aligned_dimension" : "width" #or height
}
def __init__(self, mobject, **kwargs):
digest_locals(self)
Camera.__init__(self, **kwargs)
def capture_mobjects(self, *args, **kwargs):
self.space_center = self.mobject.get_center()
2016-02-27 16:29:11 -08:00
self.realign_space_shape()
Camera.capture_mobjects(self, *args, **kwargs)
def realign_space_shape(self):
height, width = self.space_shape
if self.aligned_dimension == "height":
self.space_shape = (self.mobject.get_height()/2, width)
else:
self.space_shape = (height, self.mobject.get_width()/2)
self.resize_space_shape(
0 if self.aligned_dimension == "height" else 1
)