3b1b-manim/helpers.py

147 lines
3.7 KiB
Python
Raw Normal View History

import numpy as np
import itertools as it
from PIL import Image
from colour import Color
from random import random
import string
2015-04-14 17:55:25 -07:00
from constants import *
def hash_args(args):
args = map(lambda arg : arg.__name__ if type(arg) == type(hash_args) else arg, args)
return str(hash(str(args))%1000) if args else ""
def random_color():
color = Color()
color.set_rgb([1 - 0.5 * random() for x in range(3)])
return color
def to_cammel_case(name):
parts = name.split("_")
parts = [
filter(
lambda c : c not in string.punctuation + string.whitespace, part
).capitalize()
for part in parts
]
return "".join(parts)
2015-04-14 17:55:25 -07:00
def drag_pixels(frames):
curr = frames[0]
new_frames = []
for frame in frames:
curr += (curr == 0) * np.array(frame)
new_frames.append(np.array(curr))
return new_frames
def invert_image(image):
arr = np.array(image)
arr = (255 * np.ones(arr.shape)).astype(arr.dtype) - arr
return Image.fromarray(arr)
def make_even(iterable_1, iterable_2):
list_1, list_2 = list(iterable_1), list(iterable_2)
length = max(len(list_1), len(list_2))
return (
[list_1[(n * len(list_1)) / length] for n in xrange(length)],
[list_2[(n * len(list_2)) / length] for n in xrange(length)]
)
def make_even_by_cycling(iterable_1, iterable_2):
length = max(len(iterable_1), len(iterable_2))
cycle1 = it.cycle(iterable_1)
cycle2 = it.cycle(iterable_2)
return (
[cycle1.next() for x in range(length)],
[cycle2.next() for x in range(length)]
)
def sigmoid(x):
return 1.0/(1 + np.exp(-x))
### Alpha Functions ###
def high_inflection_0_to_1(t, inflection = 10.0):
error = sigmoid(-inflection / 2)
return (sigmoid(inflection*(t - 0.5)) - error) / (1 - 2*error)
def there_and_back(t, inflection = 10.0):
new_t = 2*t if t < 0.5 else 2*(1 - t)
return high_inflection_0_to_1(new_t, inflection)
def not_quite_there(t, proportion = 0.7):
return proportion*high_inflection_0_to_1(t)
### Functional Functions ###
def composition(func_list):
"""
func_list should contain elements of the form (f, args)
"""
return reduce(
lambda (f1, args1), (f2, args2) : (lambda x : f1(f2(x, *args2), *args1)),
func_list,
lambda x : x
)
def remove_nones(sequence):
return filter(lambda x : x, sequence)
#Matrix operations
def rotation_matrix(angle, axis):
"""
Rotation in R^3 about a specified axess of rotation.
"""
about_z = rotation_about_z(angle)
z_to_axis = z_to_vector(axis)
axis_to_z = np.linalg.inv(z_to_axis)
return reduce(np.dot, [z_to_axis, about_z, axis_to_z])
def rotation_about_z(angle):
return [
[np.cos(angle), -np.sin(angle), 0],
[np.sin(angle), np.cos(angle), 0],
[0, 0, 1]
]
def z_to_vector(vector):
"""
Returns some matrix in SO(3) which takes the z-axis to the
(normalized) vector provided as an argument
"""
norm = np.linalg.norm(vector)
if norm == 0:
return np.identity(3)
v = np.array(vector) / norm
phi = np.arccos(v[2])
if any(v[:2]):
#projection of vector to {x^2 + y^2 = 1}
axis_proj = v[:2] / np.linalg.norm(v[:2])
theta = np.arccos(axis_proj[0])
if axis_proj[1] < 0:
theta = -theta
else:
theta = 0
phi_down = np.array([
[np.cos(phi), 0, np.sin(phi)],
[0, 1, 0],
[-np.sin(phi), 0, np.cos(phi)]
])
return np.dot(rotation_about_z(theta), phi_down)
def rotate_vector(vector, angle, axis):
return np.dot(rotation_matrix(angle, axis), vector)
def angle_between(v1, v2):
return np.arccos(np.dot(
v1 / np.linalg.norm(v1),
v2 / np.linalg.norm(v2)
))