3b1b-manim/manimlib/shaders/quadratic_bezier_stroke/geom.glsl

205 lines
6.5 KiB
Text
Raw Normal View History

2020-02-03 10:52:39 -08:00
#version 330
layout (triangles) in;
layout (triangle_strip, max_vertices = 6) out;
2020-02-03 10:52:39 -08:00
2020-06-01 16:21:18 -07:00
// Needed for get_gl_Position
uniform vec2 frame_shape;
uniform vec2 pixel_shape;
2020-06-02 16:18:44 -07:00
uniform float focal_distance;
uniform float is_fixed_in_frame;
2021-01-04 13:26:14 -08:00
2020-02-03 10:52:39 -08:00
uniform float anti_alias_width;
uniform float flat_stroke;
uniform mat3 camera_rotation;
2021-01-04 13:26:14 -08:00
//Needed for lighting
uniform vec3 light_source_position;
uniform vec3 camera_position;
2020-06-08 16:03:08 -07:00
uniform float joint_type;
uniform float reflectiveness;
2020-06-28 12:13:25 -07:00
uniform float gloss;
uniform float shadow;
2020-02-03 10:52:39 -08:00
in vec3 verts[3];
2020-02-03 10:52:39 -08:00
in float v_joint_angle[3];
2020-02-03 10:52:39 -08:00
in float v_stroke_width[3];
in vec4 v_color[3];
2020-02-03 10:52:39 -08:00
out vec4 color;
out float uv_stroke_width;
out float uv_anti_alias_width;
out float is_linear;
2020-02-03 10:52:39 -08:00
out vec2 uv_coords;
// Codes for joint types
2023-01-10 11:06:41 -08:00
const int NO_JOINT = 0;
const int AUTO_JOINT = 1;
const int BEVEL_JOINT = 2;
const int MITER_JOINT = 3;
2023-01-09 10:52:12 -08:00
const float PI = 3.141592653;
2023-01-09 10:52:12 -08:00
const float ANGLE_THRESHOLD = 1e-3;
2020-02-03 10:52:39 -08:00
#INSERT get_xy_to_uv.glsl
2020-06-01 16:21:18 -07:00
#INSERT get_gl_Position.glsl
2020-06-02 16:18:44 -07:00
#INSERT get_unit_normal.glsl
#INSERT finalize_color.glsl
2023-01-10 15:17:08 -08:00
#INSERT rotate.glsl
float angle_between(vec2 v1, vec2 v2){
float abs_angle = acos(clamp(dot(normalize(v1), normalize(v2)), -1.0, 1.0));
float sgn = sign(cross2d(v1, v2));
return sgn * abs_angle;
}
2020-02-03 10:52:39 -08:00
void create_joint(float angle, vec2 unit_tan, float buff,
vec2 static_c0, out vec2 changing_c0,
vec2 static_c1, out vec2 changing_c1){
2020-02-03 10:52:39 -08:00
float shift;
2023-01-10 15:17:08 -08:00
if(abs(angle) < ANGLE_THRESHOLD || abs(angle) > 0.99 * PI || int(joint_type) == NO_JOINT){
2020-02-03 10:52:39 -08:00
// No joint
shift = 0;
2023-01-10 15:17:08 -08:00
}else if(int(joint_type) == MITER_JOINT){
2020-02-03 10:52:39 -08:00
shift = buff * (-1.0 - cos(angle)) / sin(angle);
}else{
// For a Bevel joint
shift = buff * (1.0 - cos(angle)) / sin(angle);
}
changing_c0 = static_c0 - shift * unit_tan;
changing_c1 = static_c1 + shift * unit_tan;
}
// This function is responsible for finding the corners of
// a bounding region around the bezier curve, which can be
// emitted as a triangle fan, with vertices vaguely close
// to control points so that the passage of vert data to
// frag shaders is most natural.
void get_corners(
2023-01-08 23:33:39 -05:00
vec2 controls[3],
float stroke_widths[3],
2023-01-10 12:26:16 -08:00
float aaw, // Anti-alias width
2023-01-08 23:33:39 -05:00
float angle_from_prev,
float angle_to_next,
out vec2 corners[6]
2023-01-08 23:33:39 -05:00
){
vec2 p0 = controls[0];
vec2 p1 = controls[1];
vec2 p2 = controls[2];
2020-06-02 16:18:44 -07:00
2020-06-04 11:29:36 -07:00
// Unit vectors for directions between control points
2023-01-10 12:59:10 -08:00
vec2 v01 = normalize(p1 - p0);
vec2 v12 = normalize(p2 - p1);
2020-02-03 10:52:39 -08:00
2023-01-10 12:26:16 -08:00
float cross_prod = cross2d(v01, v12);
float sgn = (cross_prod >= 0.0 || bool(is_linear)) ? 1.0 : -1.0;
vec2 p0_perp = sgn * vec2(-v01.y, v01.x); // Pointing to the inside of the curve from p0
vec2 p2_perp = sgn * vec2(-v12.y, v12.x); // Pointing to the inside of the curve from p2
2020-06-02 16:18:44 -07:00
float buff0 = 0.5 * stroke_widths[0] + aaw;
float buff2 = 0.5 * stroke_widths[2] + aaw;
2020-06-02 16:18:44 -07:00
// The order of corners should be for a triangle_strip.
vec2 c0 = p0 - buff0 * p0_perp;
vec2 c1 = p0 + buff0 * p0_perp;
vec2 c2 = p1 - 0.5 * (buff0 * p0_perp + buff2 * p2_perp);
// c3 needs to be defined after c5
vec2 c4 = p2 - buff2 * p2_perp;
vec2 c5 = p2 + buff2 * p2_perp;
vec2 c3 = 0.5 * (c1 + c5);
2020-02-03 10:52:39 -08:00
// Account for previous and next control points
create_joint(angle_from_prev, v01, buff0, c0, c0, c1, c1);
create_joint(angle_to_next, -v12, buff2, c4, c4, c5, c5);
2020-02-03 10:52:39 -08:00
corners = vec2[6](c0, c1, c2, c3, c4, c5);
2020-02-03 10:52:39 -08:00
}
void main() {
if (distance(verts[0], verts[1]) == 0 || distance(verts[1], verts[2]) == 0) return;
2023-01-08 23:58:45 -05:00
vec3 unit_normal = camera_rotation * vec3(0.0, 0.0, 1.0); // TODO, track true unit normal globally
float scaled_strokes[3];
for(int i = 0; i < 3; i++){
2023-01-10 15:17:08 -08:00
scaled_strokes[i] = v_stroke_width[i];
if(bool(flat_stroke)){
vec3 to_cam = normalize(vec3(0.0, 0.0, focal_distance) - verts[i]);
2023-01-10 15:17:08 -08:00
scaled_strokes[i] *= abs(dot(unit_normal, to_cam));
}
}
2020-02-03 10:52:39 -08:00
2023-01-10 15:32:05 -08:00
// Set joint information, potentially recomputing based on perspective
2023-01-08 23:33:39 -05:00
float angle_from_prev = v_joint_angle[0];
float angle_to_next = v_joint_angle[2];
2023-01-10 15:32:05 -08:00
2023-01-10 15:17:08 -08:00
if(angle_from_prev > 0.0 && unit_normal != vec3(0.0, 0.0, 1.0)){
vec3 v01 = verts[1] - verts[0];
vec3 from_prev = rotate(v01, angle_from_prev, unit_normal);
angle_from_prev = angle_between(from_prev.xy, v01.xy);
}
if(angle_to_next > 0.0 && unit_normal != vec3(0.0, 0.0, 1.0)){
vec3 v12 = verts[2] - verts[1];
vec3 to_next = rotate(v12, -angle_to_next, unit_normal);
angle_to_next = angle_between(v12.xy, to_next.xy);
}
// Control points are projected to the xy plane before drawing, which in turn
// gets tranlated to a uv plane. The z-coordinate information will be remembered
// by what's sent out to gl_Position, and by how it affects the lighting and stroke width
vec2 flat_verts[3] = vec2[3](verts[0].xy, verts[1].xy, verts[2].xy);
// If the curve is flat, put the middle control in the midpoint
is_linear = float(abs(v_joint_angle[1]) < ANGLE_THRESHOLD);
if (bool(is_linear)){
flat_verts[1] = 0.5 * (flat_verts[0] + flat_verts[2]);
}
2020-02-03 10:52:39 -08:00
// We want to change the coordinates to a space where the curve
// coincides with y = x^2, between some values x0 and x2. Or, in
// the case of a linear curve (bezier degree 1), just put it on
// the segment from (0, 0) to (1, 0)
2023-01-10 15:17:08 -08:00
mat3 xy_to_uv = get_xy_to_uv(flat_verts, is_linear, is_linear);
2023-01-10 12:26:16 -08:00
float uv_scale_factor = length(xy_to_uv[0].xy);
2023-01-10 15:17:08 -08:00
float scaled_aaw = anti_alias_width * (frame_shape.y / pixel_shape.y);
uv_anti_alias_width = uv_scale_factor * scaled_aaw;
2020-02-03 10:52:39 -08:00
// Corners of a bounding region around curve
vec2 corners[6];
get_corners(
2023-01-10 15:17:08 -08:00
flat_verts, scaled_strokes, scaled_aaw,
angle_from_prev, angle_to_next,
2023-01-08 23:33:39 -05:00
corners
);
2020-02-03 10:52:39 -08:00
// Emit each corner
for(int i = 0; i < 6; i++){
int vert_index = i / 2;
uv_coords = (xy_to_uv * vec3(corners[i], 1.0)).xy;
uv_stroke_width = uv_scale_factor * scaled_strokes[vert_index];
// Apply some lighting to the color before sending out.
vec3 xyz_coords = vec3(corners[i], verts[vert_index].z);
color = finalize_color(
v_color[vert_index],
xyz_coords,
unit_normal,
light_source_position,
camera_position,
reflectiveness,
2020-06-28 12:13:25 -07:00
gloss,
shadow
);
gl_Position = get_gl_Position(vec3(corners[i], verts[vert_index].z));
2020-02-03 10:52:39 -08:00
EmitVertex();
}
EndPrimitive();
}