2020-02-03 10:52:39 -08:00
|
|
|
#version 330
|
|
|
|
|
|
|
|
in vec2 uv_coords;
|
|
|
|
|
|
|
|
in float uv_stroke_width;
|
|
|
|
in float uv_anti_alias_width;
|
2023-01-09 16:46:38 -08:00
|
|
|
in vec4 color;
|
2020-02-03 10:52:39 -08:00
|
|
|
|
2023-01-10 08:54:02 -08:00
|
|
|
in float is_linear;
|
2020-02-03 10:52:39 -08:00
|
|
|
|
|
|
|
out vec4 frag_color;
|
|
|
|
|
2023-01-20 10:09:58 -08:00
|
|
|
const float QUICK_DIST_WIDTH = 0.4;
|
2023-01-09 16:46:38 -08:00
|
|
|
|
2023-01-18 13:07:18 -08:00
|
|
|
float dist_to_curve(){
|
2023-01-10 08:54:02 -08:00
|
|
|
// In the linear case, the curve will have
|
|
|
|
// been set to equal the x axis
|
2023-01-19 20:24:59 -08:00
|
|
|
if(bool(is_linear)) return abs(uv_coords.y);
|
2023-01-10 08:54:02 -08:00
|
|
|
|
2023-01-19 20:24:59 -08:00
|
|
|
// Returns distance from uv_coords to the curve v = u^2
|
|
|
|
float x0 = uv_coords.x;
|
|
|
|
float y0 = uv_coords.y;
|
2023-01-20 10:09:58 -08:00
|
|
|
// This is a quick approximation for computing
|
|
|
|
// the distance to the curve.
|
|
|
|
// Evaluate F(x, y) = y - x^2
|
|
|
|
// divide by its gradient's magnitude
|
|
|
|
float Fxy = y0 - x0 * x0;
|
|
|
|
float grad_sq = 1 + 4 * x0 * x0;
|
|
|
|
float approx_dist = abs(Fxy) / sqrt(grad_sq);
|
|
|
|
if(approx_dist < QUICK_DIST_WIDTH) return approx_dist;
|
|
|
|
|
2023-01-09 18:51:41 -08:00
|
|
|
// Otherwise, solve for the minimal distance.
|
2023-01-09 16:46:38 -08:00
|
|
|
// The distance squared between (x0, y0) and a point (x, x^2) looks like
|
|
|
|
//
|
|
|
|
// (x0 - x)^2 + (y0 - x^2)^2 = x^4 + (1 - 2y0)x^2 - 2x0 * x + (x0^2 + y0^2)
|
|
|
|
//
|
|
|
|
// Setting the derivative equal to zero (and rescaling) looks like
|
|
|
|
//
|
|
|
|
// x^3 + (0.5 - y0) * x - 0.5 * x0 = 0
|
|
|
|
//
|
2023-01-09 18:51:41 -08:00
|
|
|
// Use two rounds of Newton's method
|
2023-01-20 10:09:58 -08:00
|
|
|
float x = x0 + 2 * x0 * Fxy / grad_sq; // Seed with a step along the gradient vector
|
2023-01-09 16:46:38 -08:00
|
|
|
float p = (0.5 - y0);
|
|
|
|
float q = -0.5 * x0;
|
|
|
|
for(int i = 0; i < 2; i++){
|
|
|
|
float fx = x * x * x + p * x + q;
|
|
|
|
float dfx = 3 * x * x + p;
|
|
|
|
x = x - fx / dfx;
|
2023-01-08 23:33:39 -05:00
|
|
|
}
|
2023-01-20 10:09:58 -08:00
|
|
|
return distance(uv_coords, vec2(x, x * x));
|
2023-01-08 23:33:39 -05:00
|
|
|
}
|
2020-02-03 10:52:39 -08:00
|
|
|
|
|
|
|
|
|
|
|
void main() {
|
|
|
|
if (uv_stroke_width == 0) discard;
|
2023-01-08 23:33:39 -05:00
|
|
|
|
2023-01-18 13:07:18 -08:00
|
|
|
// sdf for the region around the curve we wish to color.
|
|
|
|
float signed_dist = dist_to_curve() - 0.5 * uv_stroke_width;
|
2020-06-06 09:26:18 -07:00
|
|
|
|
|
|
|
frag_color = color;
|
2020-02-03 10:52:39 -08:00
|
|
|
frag_color.a *= smoothstep(0.5, -0.5, signed_dist / uv_anti_alias_width);
|
|
|
|
}
|