2017-04-25 22:14:16 -07:00
|
|
|
from helpers import *
|
|
|
|
import scipy
|
|
|
|
import math
|
|
|
|
|
|
|
|
from mobject.tex_mobject import TexMobject
|
|
|
|
from mobject import Mobject
|
|
|
|
from mobject.image_mobject import ImageMobject
|
|
|
|
from mobject.vectorized_mobject import *
|
|
|
|
|
|
|
|
from animation.animation import Animation
|
|
|
|
from animation.transform import *
|
|
|
|
from animation.simple_animations import *
|
|
|
|
from animation.playground import *
|
|
|
|
from topics.geometry import *
|
|
|
|
from topics.characters import *
|
|
|
|
from topics.functions import *
|
|
|
|
from topics.fractals import *
|
|
|
|
from topics.number_line import *
|
|
|
|
from topics.combinatorics import *
|
|
|
|
from topics.numerals import *
|
|
|
|
from topics.three_dimensions import *
|
|
|
|
from topics.objects import *
|
|
|
|
from scene import Scene
|
|
|
|
from scene.zoomed_scene import ZoomedScene
|
|
|
|
from scene.reconfigurable_scene import ReconfigurableScene
|
|
|
|
from camera import Camera
|
|
|
|
from mobject.svg_mobject import *
|
|
|
|
from mobject.tex_mobject import *
|
|
|
|
|
|
|
|
from eoc.graph_scene import GraphScene
|
|
|
|
from topics.common_scenes import OpeningQuote, PatreonThanks
|
|
|
|
|
|
|
|
def derivative(func, x, n = 1, dx = 0.01):
|
|
|
|
samples = [func(x + (k - n/2)*dx) for k in range(n+1)]
|
|
|
|
while len(samples) > 1:
|
|
|
|
samples = [
|
|
|
|
(s_plus_dx - s)/dx
|
|
|
|
for s, s_plus_dx in zip(samples, samples[1:])
|
|
|
|
]
|
|
|
|
return samples[0]
|
|
|
|
|
|
|
|
def taylor_approximation(func, highest_term, center_point = 0):
|
|
|
|
derivatives = [
|
|
|
|
derivative(func, center_point, n = n)
|
|
|
|
for n in range(highest_term + 1)
|
|
|
|
]
|
|
|
|
coefficients = [
|
|
|
|
d/math.factorial(n)
|
|
|
|
for n, d in enumerate(derivatives)
|
|
|
|
]
|
|
|
|
return lambda x : sum([
|
|
|
|
c*(x**n)
|
|
|
|
for n, c in enumerate(coefficients)
|
|
|
|
])
|
|
|
|
|
|
|
|
class Chapter10OpeningQuote(OpeningQuote):
|
|
|
|
CONFIG = {
|
|
|
|
"quote" : [
|
|
|
|
"For me, mathematics is a collection of ",
|
|
|
|
"examples", "; a ",
|
|
|
|
"theorem", " is a statement about a collection of ",
|
|
|
|
"examples", " and the purpose of proving ",
|
|
|
|
"theorems", " is to classify and explain the ",
|
|
|
|
"examples", "."
|
|
|
|
],
|
|
|
|
"quote_arg_separator" : "",
|
|
|
|
"highlighted_quote_terms" : {
|
|
|
|
"examples" : BLUE,
|
|
|
|
},
|
|
|
|
"author" : "John B. Conway",
|
|
|
|
"fade_in_kwargs" : {
|
|
|
|
"run_time" : 7,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class ExampleApproximation(GraphScene):
|
|
|
|
CONFIG = {
|
|
|
|
"function" : lambda x : np.exp(-x**2),
|
|
|
|
"function_tex" : "e^{-x^2}",
|
|
|
|
"function_color" : BLUE,
|
|
|
|
"order_sequence" : [0, 2, 4],
|
|
|
|
"center_point" : 0,
|
|
|
|
"approximation_terms" : ["1 ", "-x^2", "+\\frac{1}{2}x^4"],
|
|
|
|
"approximation_color" : GREEN,
|
|
|
|
"x_min" : -3,
|
|
|
|
"x_max" : 3,
|
|
|
|
"y_min" : -1,
|
|
|
|
"y_max" : 2,
|
|
|
|
"graph_origin" : DOWN + 2*LEFT,
|
|
|
|
}
|
|
|
|
def construct(self):
|
|
|
|
self.setup_axes()
|
|
|
|
func_graph = self.get_graph(
|
|
|
|
self.function,
|
|
|
|
self.function_color,
|
|
|
|
)
|
|
|
|
approx_graphs = [
|
|
|
|
self.get_graph(
|
|
|
|
taylor_approximation(self.function, n),
|
|
|
|
self.approximation_color
|
|
|
|
)
|
|
|
|
for n in self.order_sequence
|
|
|
|
]
|
|
|
|
|
|
|
|
near_text = TextMobject(
|
|
|
|
"Near %s $= %d$"%(
|
|
|
|
self.x_axis_label, self.center_point
|
|
|
|
)
|
|
|
|
)
|
|
|
|
near_text.to_corner(UP + RIGHT)
|
|
|
|
near_text.add_background_rectangle()
|
|
|
|
equation = TexMobject(
|
|
|
|
self.function_tex,
|
|
|
|
"\\approx",
|
|
|
|
*self.approximation_terms
|
|
|
|
)
|
|
|
|
equation.next_to(near_text, DOWN, MED_LARGE_BUFF)
|
|
|
|
equation.to_edge(RIGHT)
|
|
|
|
near_text.next_to(equation, UP, MED_LARGE_BUFF)
|
|
|
|
equation.highlight_by_tex(
|
|
|
|
self.function_tex, self.function_color,
|
|
|
|
substring = False
|
|
|
|
)
|
|
|
|
approx_terms = VGroup(*[
|
|
|
|
equation.get_part_by_tex(tex, substring = False)
|
|
|
|
for tex in self.approximation_terms
|
|
|
|
])
|
|
|
|
approx_terms.set_fill(
|
|
|
|
self.approximation_color,
|
|
|
|
opacity = 0,
|
|
|
|
)
|
|
|
|
equation.add_background_rectangle()
|
|
|
|
|
|
|
|
approx_graph = VectorizedPoint(
|
|
|
|
self.input_to_graph_point(self.center_point, func_graph)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.play(
|
|
|
|
ShowCreation(func_graph, run_time = 2),
|
|
|
|
Animation(equation),
|
|
|
|
Animation(near_text),
|
|
|
|
)
|
|
|
|
for graph, term in zip(approx_graphs, approx_terms):
|
|
|
|
self.play(
|
|
|
|
Transform(approx_graph, graph, run_time = 2),
|
|
|
|
Animation(equation),
|
|
|
|
Animation(near_text),
|
|
|
|
term.set_fill, None, 1,
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
self.dither(2)
|
|
|
|
|
|
|
|
class ExampleApproximationWithSine(ExampleApproximation):
|
|
|
|
CONFIG = {
|
|
|
|
"function" : np.sin,
|
|
|
|
"function_tex" : "\\sin(x)",
|
|
|
|
"order_sequence" : [1, 3, 5],
|
|
|
|
"center_point" : 0,
|
|
|
|
"approximation_terms" : [
|
|
|
|
"x",
|
|
|
|
"-\\frac{1}{6}x^3",
|
|
|
|
"+\\frac{1}{120}x^5",
|
|
|
|
],
|
|
|
|
"approximation_color" : GREEN,
|
|
|
|
"x_min" : -2*np.pi,
|
|
|
|
"x_max" : 2*np.pi,
|
|
|
|
"x_tick_frequency" : np.pi/2,
|
|
|
|
"y_min" : -2,
|
|
|
|
"y_max" : 2,
|
|
|
|
"graph_origin" : DOWN + 2*LEFT,
|
|
|
|
}
|
|
|
|
|
|
|
|
class ExampleApproximationWithExp(ExampleApproximation):
|
|
|
|
CONFIG = {
|
|
|
|
"function" : np.exp,
|
|
|
|
"function_tex" : "e^x",
|
|
|
|
"order_sequence" : [1, 2, 3, 4],
|
|
|
|
"center_point" : 0,
|
|
|
|
"approximation_terms" : [
|
|
|
|
"1 + x",
|
|
|
|
"+\\frac{1}{2}x^2",
|
|
|
|
"+\\frac{1}{6}x^3",
|
|
|
|
"+\\frac{1}{24}x^4",
|
|
|
|
],
|
|
|
|
"approximation_color" : GREEN,
|
|
|
|
"x_min" : -3,
|
|
|
|
"x_max" : 4,
|
|
|
|
"y_min" : -1,
|
|
|
|
"y_max" : 10,
|
|
|
|
"graph_origin" : 2*DOWN + 3*LEFT,
|
|
|
|
}
|
|
|
|
|
|
|
|
class Pendulum(ReconfigurableScene):
|
|
|
|
CONFIG = {
|
|
|
|
"anchor_point" : 3*UP + 4*LEFT,
|
|
|
|
"radius" : 4,
|
|
|
|
"weight_radius" : 0.2,
|
|
|
|
"angle" : np.pi/6,
|
|
|
|
}
|
|
|
|
def construct(self):
|
|
|
|
self.draw_pendulum()
|
|
|
|
self.show_oscillation()
|
|
|
|
self.show_height()
|
|
|
|
self.get_angry_at_cosine()
|
|
|
|
self.substitute_approximation()
|
|
|
|
self.show_confusion()
|
|
|
|
|
|
|
|
|
|
|
|
def draw_pendulum(self):
|
|
|
|
pendulum = self.get_pendulum()
|
|
|
|
ceiling = self.get_ceiling()
|
|
|
|
|
|
|
|
self.add(ceiling)
|
|
|
|
self.play(ShowCreation(pendulum.line))
|
|
|
|
self.play(DrawBorderThenFill(pendulum.weight, run_time = 1))
|
|
|
|
|
|
|
|
self.pendulum = pendulum
|
|
|
|
|
|
|
|
def show_oscillation(self):
|
|
|
|
trajectory_dots = self.get_trajectory_dots()
|
|
|
|
kwargs = self.get_swing_kwargs()
|
|
|
|
|
|
|
|
self.play(
|
|
|
|
ShowCreation(
|
|
|
|
trajectory_dots,
|
|
|
|
rate_func = None,
|
|
|
|
run_time = kwargs["run_time"]
|
|
|
|
),
|
|
|
|
Rotate(self.pendulum, -2*self.angle, **kwargs),
|
|
|
|
)
|
|
|
|
for m in 2, -2, 2:
|
|
|
|
self.play(Rotate(self.pendulum, m*self.angle, **kwargs))
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
def show_height(self):
|
|
|
|
v_line = self.get_v_line()
|
|
|
|
h_line = self.get_h_line()
|
|
|
|
radius_brace = self.get_radius_brace()
|
|
|
|
height_brace = self.get_height_brace()
|
|
|
|
height_tex = self.get_height_brace_tex(height_brace)
|
|
|
|
arc, theta = self.get_arc_and_theta()
|
|
|
|
|
|
|
|
height_tex_R = height_tex.get_part_by_tex("R")
|
|
|
|
height_tex_theta = height_tex.get_part_by_tex("\\theta")
|
|
|
|
to_write = VGroup(*[
|
|
|
|
part
|
|
|
|
for part in height_tex
|
|
|
|
if part not in [height_tex_R, height_tex_theta]
|
|
|
|
])
|
|
|
|
|
|
|
|
self.play(
|
|
|
|
ShowCreation(h_line),
|
|
|
|
GrowFromCenter(height_brace)
|
|
|
|
)
|
|
|
|
self.play(
|
|
|
|
ShowCreation(v_line),
|
|
|
|
ShowCreation(arc),
|
|
|
|
Write(theta),
|
|
|
|
)
|
|
|
|
self.play(
|
|
|
|
GrowFromCenter(radius_brace)
|
|
|
|
)
|
|
|
|
self.dither(2)
|
|
|
|
self.play(
|
|
|
|
Write(to_write),
|
|
|
|
ReplacementTransform(
|
|
|
|
radius_brace[-1].copy(),
|
|
|
|
height_tex_R
|
|
|
|
),
|
|
|
|
ReplacementTransform(
|
|
|
|
theta.copy(),
|
|
|
|
height_tex_theta
|
|
|
|
),
|
|
|
|
run_time = 2
|
|
|
|
)
|
|
|
|
self.dither(2)
|
|
|
|
|
|
|
|
self.arc = arc
|
|
|
|
self.theta = theta
|
|
|
|
self.height_tex_R = height_tex_R
|
|
|
|
self.cosine = VGroup(*[
|
|
|
|
height_tex.get_part_by_tex(tex)
|
|
|
|
for tex in "cos", "theta", ")"
|
|
|
|
])
|
|
|
|
self.one_minus = VGroup(*[
|
|
|
|
height_tex.get_part_by_tex(tex)
|
|
|
|
for tex in "\\big(1-", "\\big)"
|
|
|
|
])
|
|
|
|
|
|
|
|
def get_angry_at_cosine(self):
|
|
|
|
cosine = self.cosine
|
|
|
|
morty = Mortimer()
|
|
|
|
morty.to_corner(DOWN+RIGHT)
|
|
|
|
cosine.generate_target()
|
|
|
|
cosine.save_state()
|
|
|
|
cosine.target.next_to(morty, UP)
|
|
|
|
|
|
|
|
self.play(FadeIn(morty))
|
|
|
|
self.play(
|
|
|
|
MoveToTarget(cosine),
|
|
|
|
morty.change, "angry", cosine.target,
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
self.play(Blink(morty))
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
self.morty = morty
|
|
|
|
|
|
|
|
def substitute_approximation(self):
|
|
|
|
morty = self.morty
|
|
|
|
cosine = self.cosine
|
|
|
|
cosine.generate_target()
|
|
|
|
cosine_approx = self.get_cosine_approx()
|
|
|
|
cosine_approx.next_to(cosine, UP+RIGHT)
|
|
|
|
cosine_approx.to_edge(RIGHT)
|
|
|
|
cosine.target.next_to(
|
|
|
|
cosine_approx, LEFT,
|
|
|
|
align_using_submobjects = True
|
|
|
|
)
|
|
|
|
kwargs = self.get_swing_kwargs()
|
|
|
|
|
|
|
|
self.play(
|
|
|
|
FadeIn(
|
|
|
|
cosine_approx,
|
|
|
|
run_time = 2,
|
|
|
|
submobject_mode = "lagged_start"
|
|
|
|
),
|
|
|
|
MoveToTarget(cosine),
|
|
|
|
morty.change, "pondering", cosine_approx
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
self.play(
|
|
|
|
ApplyMethod(
|
|
|
|
cosine_approx.theta_squared_over_two.copy().next_to,
|
|
|
|
self.height_tex_R,
|
|
|
|
run_time = 2,
|
|
|
|
),
|
|
|
|
FadeOut(self.one_minus),
|
|
|
|
morty.look_at, self.height_tex_R,
|
|
|
|
)
|
|
|
|
self.play(morty.change, "thinking", self.height_tex_R)
|
|
|
|
self.transition_to_alt_config(
|
|
|
|
angle = np.pi/12,
|
|
|
|
transformation_kwargs = {"run_time" : 2},
|
|
|
|
)
|
|
|
|
|
|
|
|
def show_confusion(self):
|
|
|
|
randy = Randolph(color = BLUE_C)
|
|
|
|
randy.scale(0.8)
|
|
|
|
randy.next_to(self.cosine, DOWN+LEFT)
|
|
|
|
randy.to_edge(DOWN)
|
|
|
|
|
|
|
|
self.play(FadeIn(randy))
|
|
|
|
self.play(
|
|
|
|
randy.change, "confused", self.cosine
|
|
|
|
)
|
|
|
|
self.play(randy.look_at, self.height_tex_R)
|
|
|
|
self.dither()
|
|
|
|
self.play(randy.look_at, self.cosine)
|
|
|
|
self.play(Blink(randy))
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
#######
|
|
|
|
|
|
|
|
def get_pendulum(self):
|
|
|
|
line = Line(
|
|
|
|
self.anchor_point,
|
|
|
|
self.anchor_point + self.radius*DOWN,
|
|
|
|
color = WHITE
|
|
|
|
)
|
|
|
|
weight = Circle(
|
|
|
|
radius = self.weight_radius,
|
|
|
|
fill_color = GREY,
|
|
|
|
fill_opacity = 1,
|
|
|
|
stroke_width = 0,
|
|
|
|
)
|
|
|
|
weight.move_to(line.get_end())
|
|
|
|
result = VGroup(line, weight)
|
|
|
|
result.rotate(
|
|
|
|
self.angle,
|
|
|
|
about_point = self.anchor_point
|
|
|
|
)
|
|
|
|
result.line = line
|
|
|
|
result.weight = weight
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
def get_ceiling(self):
|
|
|
|
line = Line(LEFT, RIGHT, color = GREY)
|
|
|
|
line.scale(SPACE_WIDTH)
|
|
|
|
line.move_to(self.anchor_point[1]*UP)
|
|
|
|
return line
|
|
|
|
|
|
|
|
def get_trajectory_dots(self, n_dots = 40, color = YELLOW):
|
|
|
|
arc_angle = np.pi/6
|
|
|
|
proportions = self.swing_rate_func(
|
|
|
|
np.linspace(0, 1, n_dots)
|
|
|
|
)
|
|
|
|
angles = -2*arc_angle*proportions
|
|
|
|
angle_to_point = lambda a : np.cos(a)*RIGHT + np.sin(a)*UP
|
|
|
|
dots = VGroup(*[
|
|
|
|
# Line(*map(angle_to_point, pair))
|
|
|
|
Dot(angle_to_point(angle), radius = 0.005)
|
|
|
|
for angle in angles
|
|
|
|
])
|
|
|
|
|
|
|
|
dots.highlight(color)
|
|
|
|
dots.scale(self.radius)
|
|
|
|
dots.rotate(-np.pi/2 + arc_angle)
|
|
|
|
dots.shift(self.anchor_point)
|
|
|
|
return dots
|
|
|
|
|
|
|
|
def get_v_line(self):
|
|
|
|
return DashedLine(
|
|
|
|
self.anchor_point,
|
|
|
|
self.anchor_point + self.radius*DOWN,
|
|
|
|
color = WHITE
|
|
|
|
)
|
|
|
|
|
|
|
|
def get_h_line(self, color = BLUE):
|
|
|
|
start = self.anchor_point + self.radius*DOWN
|
|
|
|
end = start + self.radius*np.sin(self.angle)*RIGHT
|
|
|
|
|
|
|
|
return Line(start, end, color = color)
|
|
|
|
|
|
|
|
def get_radius_brace(self):
|
|
|
|
v_line = self.get_v_line()
|
|
|
|
brace = Brace(v_line, RIGHT)
|
|
|
|
brace.rotate(self.angle, about_point = self.anchor_point)
|
|
|
|
brace.add(brace.get_text("$R$", buff = SMALL_BUFF))
|
|
|
|
return brace
|
|
|
|
|
|
|
|
def get_height_brace(self):
|
|
|
|
h_line = self.get_h_line()
|
|
|
|
height = (1 - np.cos(self.angle))*self.radius
|
|
|
|
line = Line(
|
|
|
|
h_line.get_end(),
|
|
|
|
h_line.get_end() + height*UP,
|
|
|
|
)
|
|
|
|
brace = Brace(line, RIGHT)
|
|
|
|
return brace
|
|
|
|
|
|
|
|
def get_height_brace_tex(self, brace):
|
|
|
|
tex_mob = TexMobject(
|
|
|
|
"R", "\\big(1-", "\\cos(", "\\theta", ")", "\\big)"
|
|
|
|
)
|
|
|
|
tex_mob.highlight_by_tex("theta", YELLOW)
|
|
|
|
tex_mob.next_to(brace, RIGHT)
|
|
|
|
return tex_mob
|
|
|
|
|
|
|
|
def get_arc_and_theta(self):
|
|
|
|
arc = Arc(
|
|
|
|
start_angle = -np.pi/2,
|
|
|
|
angle = self.angle,
|
|
|
|
color = YELLOW
|
|
|
|
)
|
|
|
|
theta = TexMobject("\\theta")
|
|
|
|
theta.highlight(YELLOW)
|
|
|
|
theta.next_to(
|
|
|
|
arc.point_from_proportion(0.5),
|
|
|
|
DOWN, SMALL_BUFF
|
|
|
|
)
|
|
|
|
for mob in arc, theta:
|
|
|
|
mob.shift(self.anchor_point)
|
|
|
|
return arc, theta
|
|
|
|
|
|
|
|
def get_cosine_approx(self):
|
|
|
|
approx = TexMobject(
|
|
|
|
"\\approx 1 - ", "{\\theta", "^2", "\\over", "2}"
|
|
|
|
)
|
|
|
|
approx.highlight_by_tex("theta", YELLOW)
|
|
|
|
approx.theta_squared_over_two = VGroup(*approx[-4:])
|
|
|
|
|
|
|
|
return approx
|
|
|
|
|
|
|
|
def get_swing_kwargs(self):
|
|
|
|
return {
|
|
|
|
"about_point" : self.anchor_point,
|
|
|
|
"run_time" : 1.7,
|
|
|
|
"rate_func" : self.swing_rate_func,
|
|
|
|
}
|
|
|
|
|
|
|
|
def swing_rate_func(self, t):
|
|
|
|
return (1-np.cos(np.pi*t))/2.0
|
|
|
|
|
|
|
|
class ExampleApproximationWithCos(ExampleApproximationWithSine):
|
|
|
|
CONFIG = {
|
|
|
|
"function" : np.cos,
|
|
|
|
"function_tex" : "\\cos(\\theta)",
|
|
|
|
"order_sequence" : [0, 2],
|
|
|
|
"approximation_terms" : [
|
|
|
|
"1",
|
|
|
|
"-\\frac{1}{2} \\theta ^2",
|
|
|
|
],
|
|
|
|
"x_axis_label" : "$\\theta$",
|
|
|
|
"y_axis_label" : "",
|
|
|
|
"x_axis_width" : 13,
|
|
|
|
"graph_origin" : DOWN,
|
|
|
|
}
|
|
|
|
|
|
|
|
def construct(self):
|
|
|
|
ExampleApproximationWithSine.construct(self)
|
|
|
|
randy = Randolph(color = BLUE_C)
|
|
|
|
randy.to_corner(DOWN+LEFT)
|
|
|
|
high_graph = self.get_graph(lambda x : 4)
|
|
|
|
v_lines, alt_v_lines = [
|
|
|
|
VGroup(*[
|
|
|
|
self.get_vertical_line_to_graph(
|
|
|
|
u*dx, high_graph,
|
|
|
|
line_class = DashedLine,
|
|
|
|
color = YELLOW
|
|
|
|
)
|
|
|
|
for u in -1, 1
|
|
|
|
])
|
|
|
|
for dx in 0.01, 0.7
|
|
|
|
]
|
|
|
|
|
|
|
|
self.play(*map(ShowCreation, v_lines), run_time = 2)
|
|
|
|
self.play(Transform(
|
|
|
|
v_lines, alt_v_lines,
|
|
|
|
run_time = 2,
|
|
|
|
))
|
|
|
|
self.play(FadeIn(randy))
|
|
|
|
self.play(PiCreatureBubbleIntroduction(
|
|
|
|
randy, "How...?",
|
|
|
|
bubble_class = ThoughtBubble,
|
|
|
|
look_at_arg = self.graph_origin,
|
|
|
|
target_mode = "confused"
|
|
|
|
))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(Blink(randy))
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
def setup_axes(self):
|
|
|
|
GraphScene.setup_axes(self)
|
|
|
|
x_val_label_pairs = [
|
|
|
|
(-np.pi, "-\\pi"),
|
|
|
|
(np.pi, "\\pi"),
|
|
|
|
(2*np.pi, "2\\pi"),
|
|
|
|
]
|
|
|
|
for x_val, label in x_val_label_pairs:
|
|
|
|
tex = TexMobject(label)
|
|
|
|
tex.next_to(self.coords_to_point(x_val, 0), DOWN)
|
|
|
|
self.add(tex)
|
|
|
|
|
|
|
|
class ConstructQuadraticApproximation(ExampleApproximationWithCos, ZoomedScene):
|
|
|
|
CONFIG = {
|
|
|
|
"x_axis_label" : "$x$",
|
|
|
|
"colors" : [BLUE, YELLOW, GREEN],
|
|
|
|
"zoomed_canvas_corner" : DOWN+LEFT,
|
|
|
|
"zoom_factor" : 2,
|
|
|
|
}
|
|
|
|
def construct(self):
|
|
|
|
self.setup_axes()
|
|
|
|
self.add_cosine_graph()
|
|
|
|
self.add_quadratic_graph()
|
|
|
|
self.introduce_quadratic_constants()
|
|
|
|
self.show_value_at_zero()
|
|
|
|
self.set_c0_to_one()
|
|
|
|
self.let_c1_and_c2_vary()
|
|
|
|
self.show_tangent_slope()
|
|
|
|
self.compute_cosine_derivative()
|
|
|
|
self.compute_polynomial_derivative()
|
|
|
|
self.let_c2_vary()
|
|
|
|
self.point_out_negative_concavity()
|
|
|
|
self.compute_cosine_second_derivative()
|
|
|
|
self.show_matching_curvature()
|
2017-04-25 23:38:06 -07:00
|
|
|
self.show_matching_tangent_lines()
|
2017-04-25 22:14:16 -07:00
|
|
|
self.compute_polynomial_second_derivative()
|
2017-04-25 23:38:06 -07:00
|
|
|
self.box_final_answer()
|
2017-04-25 22:14:16 -07:00
|
|
|
|
|
|
|
def add_cosine_graph(self):
|
|
|
|
cosine_label = TexMobject("\\cos(x)")
|
|
|
|
cosine_label.to_corner(UP+LEFT)
|
|
|
|
cosine_graph = self.get_graph(np.cos)
|
|
|
|
dot = Dot(color = WHITE)
|
|
|
|
dot.move_to(cosine_label)
|
|
|
|
for mob in cosine_label, cosine_graph:
|
|
|
|
mob.highlight(self.colors[0])
|
|
|
|
|
|
|
|
def update_dot(dot):
|
|
|
|
dot.move_to(cosine_graph.points[-1])
|
|
|
|
return dot
|
|
|
|
|
|
|
|
self.play(Write(cosine_label, run_time = 1))
|
|
|
|
self.play(dot.move_to, cosine_graph.points[0])
|
|
|
|
self.play(
|
|
|
|
ShowCreation(cosine_graph),
|
|
|
|
UpdateFromFunc(dot, update_dot),
|
|
|
|
run_time = 4
|
|
|
|
)
|
|
|
|
self.play(FadeOut(dot))
|
|
|
|
|
|
|
|
self.cosine_label = cosine_label
|
|
|
|
self.cosine_graph = cosine_graph
|
|
|
|
|
|
|
|
def add_quadratic_graph(self):
|
|
|
|
quadratic_graph = self.get_quadratic_graph()
|
|
|
|
|
|
|
|
self.play(ReplacementTransform(
|
|
|
|
self.cosine_graph.copy(),
|
2017-04-26 11:26:37 -07:00
|
|
|
quadratic_graph,
|
|
|
|
run_time = 3
|
2017-04-25 22:14:16 -07:00
|
|
|
))
|
|
|
|
|
|
|
|
self.quadratic_graph = quadratic_graph
|
|
|
|
|
|
|
|
def introduce_quadratic_constants(self):
|
|
|
|
quadratic_tex = self.get_quadratic_tex("c_0", "c_1", "c_2")
|
|
|
|
const_terms = quadratic_tex.get_parts_by_tex("c")
|
|
|
|
free_to_change = TextMobject("Free to change")
|
|
|
|
free_to_change.next_to(const_terms, DOWN, LARGE_BUFF)
|
|
|
|
arrows = VGroup(*[
|
|
|
|
Arrow(
|
|
|
|
free_to_change.get_top(),
|
|
|
|
const.get_bottom(),
|
|
|
|
tip_length = 0.75*Arrow.CONFIG["tip_length"],
|
|
|
|
color = const.get_color()
|
|
|
|
)
|
|
|
|
for const in const_terms
|
|
|
|
])
|
|
|
|
alt_consts_list = [
|
|
|
|
(0, -1, -0.25),
|
|
|
|
(1, -1, -0.25),
|
|
|
|
(1, 0, -0.25),
|
|
|
|
(),
|
|
|
|
]
|
|
|
|
|
|
|
|
self.play(FadeIn(
|
|
|
|
quadratic_tex,
|
|
|
|
run_time = 3,
|
|
|
|
submobject_mode = "lagged_start"
|
|
|
|
))
|
|
|
|
self.play(
|
|
|
|
FadeIn(free_to_change),
|
|
|
|
*map(ShowCreation, arrows)
|
|
|
|
)
|
|
|
|
self.play(*[
|
|
|
|
ApplyMethod(
|
|
|
|
const.scale_in_place, 0.8,
|
|
|
|
run_time = 2,
|
|
|
|
rate_func = squish_rate_func(there_and_back, a, a + 0.75)
|
|
|
|
)
|
|
|
|
for const, a in zip(const_terms, np.linspace(0, 0.25, len(const_terms)))
|
|
|
|
])
|
|
|
|
for alt_consts in alt_consts_list:
|
|
|
|
self.change_quadratic_graph(
|
|
|
|
self.quadratic_graph, *alt_consts
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
self.quadratic_tex = quadratic_tex
|
|
|
|
self.free_to_change_group = VGroup(free_to_change, *arrows)
|
|
|
|
self.free_to_change_group.arrows = arrows
|
|
|
|
|
|
|
|
def show_value_at_zero(self):
|
|
|
|
arrow, x_equals_0 = ax0_group = self.get_arrow_x_equals_0_group()
|
|
|
|
ax0_group.next_to(
|
|
|
|
self.cosine_label, RIGHT,
|
|
|
|
align_using_submobjects = True
|
|
|
|
)
|
|
|
|
one = TexMobject("1")
|
|
|
|
one.next_to(arrow, RIGHT)
|
|
|
|
one.save_state()
|
|
|
|
one.move_to(self.cosine_label)
|
|
|
|
one.set_fill(opacity = 0)
|
|
|
|
|
|
|
|
v_line = self.get_vertical_line_to_graph(
|
|
|
|
0, self.cosine_graph,
|
|
|
|
line_class = DashedLine,
|
|
|
|
color = YELLOW
|
|
|
|
)
|
|
|
|
|
|
|
|
self.play(ShowCreation(v_line))
|
|
|
|
self.play(
|
|
|
|
ShowCreation(arrow),
|
|
|
|
Write(x_equals_0, run_time = 2)
|
|
|
|
)
|
|
|
|
self.play(one.restore)
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
self.v_line = v_line
|
|
|
|
self.equals_one_group = VGroup(arrow, x_equals_0, one)
|
|
|
|
|
|
|
|
def set_c0_to_one(self):
|
|
|
|
poly_at_zero = self.get_quadratic_tex(
|
|
|
|
"c_0", "c_1", "c_2", arg = "0"
|
|
|
|
)
|
|
|
|
poly_at_zero.next_to(self.quadratic_tex, DOWN)
|
|
|
|
equals_c0 = TexMobject("=", "c_0", "+0")
|
|
|
|
equals_c0.highlight_by_tex("c_0", self.colors[0])
|
|
|
|
equals_c0.next_to(
|
|
|
|
poly_at_zero.get_part_by_tex("="), DOWN,
|
|
|
|
buff = MED_LARGE_BUFF,
|
|
|
|
aligned_edge = LEFT
|
|
|
|
)
|
|
|
|
poly_group = VGroup(
|
|
|
|
equals_c0,
|
|
|
|
poly_at_zero,
|
|
|
|
self.quadratic_tex,
|
|
|
|
)
|
|
|
|
poly_group_target = VGroup(
|
|
|
|
TexMobject("=", "1", "+0").highlight_by_tex("1", self.colors[0]),
|
|
|
|
self.get_quadratic_tex("1", "c_1", "c_2", arg = "0"),
|
|
|
|
self.get_quadratic_tex("1", "c_1", "c_2"),
|
|
|
|
)
|
|
|
|
for start, target in zip(poly_group, poly_group_target):
|
|
|
|
target.move_to(start)
|
|
|
|
|
|
|
|
self.play(FadeOut(self.free_to_change_group))
|
|
|
|
self.play(ReplacementTransform(
|
|
|
|
self.quadratic_tex.copy(),
|
|
|
|
poly_at_zero
|
|
|
|
))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(FadeIn(equals_c0))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(Transform(
|
|
|
|
poly_group, poly_group_target,
|
|
|
|
run_time = 2,
|
|
|
|
submobject_mode = "lagged_start"
|
|
|
|
))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(*map(FadeOut, [poly_at_zero, equals_c0]))
|
|
|
|
|
|
|
|
self.free_to_change_group.remove(
|
|
|
|
self.free_to_change_group.arrows[0]
|
|
|
|
)
|
|
|
|
self.play(FadeIn(self.free_to_change_group))
|
|
|
|
|
|
|
|
def let_c1_and_c2_vary(self):
|
|
|
|
alt_consts_list = [
|
|
|
|
(1, 1, -0.25),
|
|
|
|
(1, -1, -0.25),
|
|
|
|
(1, -1, 0.25),
|
|
|
|
(1, 1, -0.1),
|
|
|
|
]
|
|
|
|
|
|
|
|
for alt_consts in alt_consts_list:
|
|
|
|
self.change_quadratic_graph(
|
|
|
|
self.quadratic_graph,
|
|
|
|
*alt_consts
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
def show_tangent_slope(self):
|
|
|
|
graph_point_at_zero = self.input_to_graph_point(
|
|
|
|
0, self.cosine_graph
|
|
|
|
)
|
2017-04-25 23:38:06 -07:00
|
|
|
tangent_line = self.get_tangent_line(0, self.cosine_graph)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
|
|
|
self.play(ShowCreation(tangent_line))
|
|
|
|
self.change_quadratic_graph(
|
|
|
|
self.quadratic_graph, 1, 0, -0.1
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
self.change_quadratic_graph(
|
|
|
|
self.quadratic_graph, 1, 1, -0.1
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
self.activate_zooming()
|
|
|
|
self.little_rectangle.move_to(graph_point_at_zero)
|
|
|
|
self.play(
|
|
|
|
self.little_rectangle.scale_in_place, 0.1,
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
self.change_quadratic_graph(
|
|
|
|
self.quadratic_graph, 1, 0, -0.1
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
self.disactivate_zooming()
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
self.tangent_line = tangent_line
|
|
|
|
|
|
|
|
def compute_cosine_derivative(self):
|
2017-04-26 11:26:37 -07:00
|
|
|
derivative, rhs = self.get_cosine_derivative()
|
|
|
|
|
2017-04-25 22:14:16 -07:00
|
|
|
|
|
|
|
self.play(FadeIn(
|
|
|
|
VGroup(derivative, *rhs[:2]),
|
|
|
|
run_time = 2,
|
|
|
|
submobject_mode = "lagged_start"
|
|
|
|
))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(Write(VGroup(*rhs[2:])), run_time = 2)
|
|
|
|
self.dither()
|
|
|
|
self.play(Rotate(
|
|
|
|
self.tangent_line, np.pi/12,
|
|
|
|
in_place = True,
|
|
|
|
run_time = 3,
|
|
|
|
rate_func = wiggle
|
|
|
|
))
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
def compute_polynomial_derivative(self):
|
|
|
|
derivative = self.get_quadratic_derivative("c_1", "c_2")
|
|
|
|
derivative_at_zero = self.get_quadratic_derivative(
|
|
|
|
"c_1", "c_2", arg = "0"
|
|
|
|
)
|
|
|
|
equals_c1 = TexMobject("=", "c_1", "+0")
|
|
|
|
equals_c1.next_to(
|
|
|
|
derivative_at_zero.get_part_by_tex("="), DOWN,
|
|
|
|
buff = MED_LARGE_BUFF,
|
|
|
|
aligned_edge = LEFT,
|
|
|
|
)
|
|
|
|
equals_c1.highlight_by_tex("c_1", self.colors[1])
|
|
|
|
poly_group = VGroup(
|
|
|
|
equals_c1,
|
|
|
|
derivative,
|
|
|
|
self.quadratic_tex
|
|
|
|
)
|
|
|
|
poly_group_target = VGroup(
|
|
|
|
TexMobject("=", "0", "+0").highlight_by_tex(
|
|
|
|
"0", self.colors[1], substring = False
|
|
|
|
),
|
|
|
|
self.get_quadratic_derivative("0", "c_2", arg = "0"),
|
|
|
|
self.get_quadratic_tex("1", "0", "c_2")
|
|
|
|
)
|
|
|
|
for start, target in zip(poly_group, poly_group_target):
|
|
|
|
target.move_to(start)
|
|
|
|
|
|
|
|
self.play(FadeOut(self.free_to_change_group))
|
|
|
|
self.play(FadeIn(
|
|
|
|
derivative,
|
|
|
|
run_time = 3,
|
|
|
|
submobject_mode = "lagged_start"
|
|
|
|
))
|
|
|
|
self.dither()
|
|
|
|
self.play(Transform(
|
|
|
|
derivative, derivative_at_zero,
|
|
|
|
run_time = 2,
|
|
|
|
submobject_mode = "lagged_start"
|
|
|
|
))
|
2017-04-25 23:38:06 -07:00
|
|
|
self.dither(2)
|
2017-04-25 22:14:16 -07:00
|
|
|
self.play(Write(equals_c1))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(Transform(
|
|
|
|
poly_group, poly_group_target,
|
|
|
|
run_time = 3,
|
|
|
|
submobject_mode = "lagged_start"
|
|
|
|
))
|
|
|
|
self.dither(2)
|
|
|
|
|
|
|
|
self.play(*map(FadeOut, poly_group[:-1]))
|
|
|
|
self.free_to_change_group.remove(
|
|
|
|
self.free_to_change_group.arrows[1]
|
|
|
|
)
|
|
|
|
self.play(FadeIn(self.free_to_change_group))
|
|
|
|
|
|
|
|
def let_c2_vary(self):
|
2017-04-25 23:38:06 -07:00
|
|
|
alt_c2_values = [-1, -0.05, 1, -0.2]
|
|
|
|
for alt_c2 in alt_c2_values:
|
|
|
|
self.change_quadratic_graph(
|
|
|
|
self.quadratic_graph,
|
|
|
|
1, 0, alt_c2
|
|
|
|
)
|
|
|
|
self.dither()
|
2017-04-25 22:14:16 -07:00
|
|
|
|
|
|
|
def point_out_negative_concavity(self):
|
2017-04-25 23:38:06 -07:00
|
|
|
partial_cosine_graph = self.get_graph(
|
|
|
|
np.cos,
|
|
|
|
x_min = -1,
|
|
|
|
x_max = 1,
|
|
|
|
color = PINK
|
|
|
|
)
|
|
|
|
|
|
|
|
self.play(ShowCreation(partial_cosine_graph, run_time = 2))
|
|
|
|
self.dither()
|
2017-04-26 11:26:37 -07:00
|
|
|
for x, run_time in (-1, 2), (1, 4):
|
2017-04-25 23:38:06 -07:00
|
|
|
self.play(self.get_tangent_line_change_anim(
|
|
|
|
self.tangent_line, x, self.cosine_graph,
|
2017-04-26 11:26:37 -07:00
|
|
|
run_time = run_time
|
2017-04-25 23:38:06 -07:00
|
|
|
))
|
|
|
|
self.dither()
|
|
|
|
self.play(*map(FadeOut, [
|
|
|
|
partial_cosine_graph, self.tangent_line
|
|
|
|
]))
|
2017-04-25 22:14:16 -07:00
|
|
|
|
|
|
|
def compute_cosine_second_derivative(self):
|
2017-04-26 11:26:37 -07:00
|
|
|
second_deriv, rhs = self.get_cosine_second_derivative()
|
2017-04-25 23:38:06 -07:00
|
|
|
|
|
|
|
self.play(FadeIn(
|
2017-04-26 16:22:49 -07:00
|
|
|
VGroup(second_deriv, *rhs[1][:2]),
|
2017-04-25 23:38:06 -07:00
|
|
|
run_time = 2,
|
|
|
|
submobject_mode = "lagged_start"
|
|
|
|
))
|
|
|
|
self.dither(3)
|
2017-04-26 16:22:49 -07:00
|
|
|
self.play(Write(VGroup(*rhs[1][2:]), run_time = 2))
|
2017-04-25 23:38:06 -07:00
|
|
|
self.dither()
|
2017-04-25 22:14:16 -07:00
|
|
|
|
|
|
|
def show_matching_curvature(self):
|
2017-04-25 23:38:06 -07:00
|
|
|
alt_consts_list = [
|
|
|
|
(1, 1, -0.2),
|
|
|
|
(1, 0, -0.2),
|
|
|
|
(1, 0, -0.5),
|
|
|
|
]
|
|
|
|
for alt_consts in alt_consts_list:
|
|
|
|
self.change_quadratic_graph(
|
|
|
|
self.quadratic_graph,
|
|
|
|
*alt_consts
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
def show_matching_tangent_lines(self):
|
|
|
|
graphs = [self.quadratic_graph, self.cosine_graph]
|
|
|
|
tangent_lines = [
|
|
|
|
self.get_tangent_line(0, graph, color = color)
|
|
|
|
for graph, color in zip(graphs, [WHITE, YELLOW])
|
|
|
|
]
|
|
|
|
tangent_change_anims = [
|
|
|
|
self.get_tangent_line_change_anim(
|
|
|
|
line, np.pi/2, graph,
|
2017-04-26 11:26:37 -07:00
|
|
|
run_time = 6,
|
|
|
|
rate_func = there_and_back,
|
2017-04-25 23:38:06 -07:00
|
|
|
)
|
|
|
|
for line, graph in zip(tangent_lines, graphs)
|
|
|
|
]
|
|
|
|
|
|
|
|
self.play(*map(ShowCreation, tangent_lines))
|
|
|
|
self.play(*tangent_change_anims)
|
|
|
|
self.play(*map(FadeOut, tangent_lines))
|
2017-04-25 22:14:16 -07:00
|
|
|
|
|
|
|
def compute_polynomial_second_derivative(self):
|
2017-04-25 23:38:06 -07:00
|
|
|
c2s = ["c_2", "\\text{\\tiny $\\left(-\\frac{1}{2}\\right)$}"]
|
|
|
|
derivs = [
|
|
|
|
self.get_quadratic_derivative("0", c2)
|
|
|
|
for c2 in c2s
|
|
|
|
]
|
|
|
|
second_derivs = [
|
|
|
|
TexMobject(
|
|
|
|
"{d^2 P \\over dx^2}", "(x)", "=", "2", c2
|
|
|
|
)
|
|
|
|
for c2 in c2s
|
|
|
|
]
|
|
|
|
for deriv, second_deriv in zip(derivs, second_derivs):
|
|
|
|
second_deriv[0].scale(
|
|
|
|
0.7, about_point = second_deriv[0].get_right()
|
|
|
|
)
|
|
|
|
second_deriv[-1].highlight(self.colors[-1])
|
|
|
|
second_deriv.next_to(
|
|
|
|
deriv, DOWN,
|
|
|
|
buff = MED_LARGE_BUFF,
|
|
|
|
aligned_edge = LEFT
|
|
|
|
)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-25 23:38:06 -07:00
|
|
|
poly_group = VGroup(
|
|
|
|
second_derivs[0],
|
|
|
|
derivs[0],
|
|
|
|
self.quadratic_tex
|
|
|
|
)
|
|
|
|
poly_group_target = VGroup(
|
|
|
|
second_derivs[1],
|
|
|
|
derivs[1],
|
|
|
|
self.get_quadratic_tex("1", "0", c2s[1])
|
|
|
|
)
|
|
|
|
for tex_mob in poly_group_target:
|
|
|
|
tex_mob.get_part_by_tex(c2s[1]).shift(SMALL_BUFF*UP)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-25 23:38:06 -07:00
|
|
|
self.play(FadeOut(self.free_to_change_group))
|
|
|
|
self.play(FadeIn(derivs[0]))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(Write(second_derivs[0]))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(Transform(
|
|
|
|
poly_group, poly_group_target,
|
|
|
|
run_time = 3,
|
|
|
|
submobject_mode = "lagged_start"
|
|
|
|
))
|
|
|
|
self.dither(3)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-25 23:38:06 -07:00
|
|
|
def box_final_answer(self):
|
|
|
|
box = Rectangle(stroke_color = PINK)
|
|
|
|
box.stretch_to_fit_width(
|
|
|
|
self.quadratic_tex.get_width() + MED_LARGE_BUFF
|
|
|
|
)
|
|
|
|
box.stretch_to_fit_height(
|
|
|
|
self.quadratic_tex.get_height() + MED_LARGE_BUFF
|
|
|
|
)
|
|
|
|
box.move_to(self.quadratic_tex)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-25 23:38:06 -07:00
|
|
|
self.play(ShowCreation(box, run_time = 2))
|
|
|
|
self.dither(2)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
|
|
|
######
|
|
|
|
|
|
|
|
def change_quadratic_graph(self, graph, *args, **kwargs):
|
|
|
|
transformation_kwargs = {}
|
|
|
|
transformation_kwargs["run_time"] = kwargs.pop("run_time", 2)
|
|
|
|
transformation_kwargs["rate_func"] = kwargs.pop("rate_func", smooth)
|
|
|
|
new_graph = self.get_quadratic_graph(*args, **kwargs)
|
|
|
|
self.play(Transform(graph, new_graph, **transformation_kwargs))
|
|
|
|
graph.underlying_function = new_graph.underlying_function
|
|
|
|
|
|
|
|
def get_quadratic_graph(self, c0 = 1, c1 = 0, c2 = -0.5):
|
|
|
|
return self.get_graph(
|
|
|
|
lambda x : c0 + c1*x + c2*x**2,
|
2017-04-26 11:26:37 -07:00
|
|
|
color = self.colors[2]
|
2017-04-25 22:14:16 -07:00
|
|
|
)
|
|
|
|
|
|
|
|
def get_quadratic_tex(self, c0, c1, c2, arg = "x"):
|
|
|
|
tex_mob = TexMobject(
|
|
|
|
"P(", arg, ")", "=",
|
|
|
|
c0, "+", c1, arg, "+", c2, arg, "^2"
|
|
|
|
)
|
|
|
|
for tex, color in zip([c0, c1, c2], self.colors):
|
|
|
|
tex_mob.highlight_by_tex(tex, color)
|
|
|
|
tex_mob.to_corner(UP+RIGHT)
|
|
|
|
return tex_mob
|
|
|
|
|
|
|
|
def get_quadratic_derivative(self, c1, c2, arg = "x"):
|
|
|
|
result = TexMobject(
|
|
|
|
"{dP \\over dx}", "(", arg, ")", "=",
|
|
|
|
c1, "+", "2", c2, arg
|
|
|
|
)
|
2017-04-25 23:38:06 -07:00
|
|
|
result[0].scale(0.7, about_point = result[0].get_right())
|
|
|
|
for index, color in zip([5, 8], self.colors[1:]):
|
|
|
|
result[index].highlight(color)
|
2017-04-25 22:14:16 -07:00
|
|
|
if hasattr(self, "quadratic_tex"):
|
|
|
|
result.next_to(
|
|
|
|
self.quadratic_tex, DOWN,
|
|
|
|
buff = MED_LARGE_BUFF,
|
|
|
|
aligned_edge = LEFT
|
|
|
|
)
|
|
|
|
return result
|
|
|
|
|
|
|
|
def get_arrow_x_equals_0_group(self):
|
|
|
|
arrow = Arrow(LEFT, RIGHT)
|
|
|
|
x_equals_0 = TexMobject("x = 0")
|
|
|
|
x_equals_0.scale(0.75)
|
2017-04-25 23:38:06 -07:00
|
|
|
x_equals_0.next_to(arrow.get_center(), UP, 2*SMALL_BUFF)
|
2017-04-25 22:14:16 -07:00
|
|
|
x_equals_0.shift(SMALL_BUFF*LEFT)
|
|
|
|
return VGroup(arrow, x_equals_0)
|
|
|
|
|
2017-04-25 23:38:06 -07:00
|
|
|
def get_tangent_line(self, x, graph, color = YELLOW):
|
|
|
|
tangent_line = Line(LEFT, RIGHT, color = color)
|
|
|
|
tangent_line.rotate(self.angle_of_tangent(x, graph))
|
|
|
|
tangent_line.scale(2)
|
|
|
|
tangent_line.move_to(self.input_to_graph_point(x, graph))
|
|
|
|
return tangent_line
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-25 23:38:06 -07:00
|
|
|
def get_tangent_line_change_anim(self, tangent_line, new_x, graph, **kwargs):
|
|
|
|
start_x = self.x_axis.point_to_number(
|
|
|
|
tangent_line.get_center()
|
|
|
|
)
|
|
|
|
def update(tangent_line, alpha):
|
|
|
|
x = interpolate(start_x, new_x, alpha)
|
|
|
|
new_line = self.get_tangent_line(
|
|
|
|
x, graph, color = tangent_line.get_color()
|
|
|
|
)
|
|
|
|
Transform(tangent_line, new_line).update(1)
|
|
|
|
return tangent_line
|
|
|
|
return UpdateFromAlphaFunc(tangent_line, update, **kwargs)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-26 11:26:37 -07:00
|
|
|
def get_cosine_derivative(self):
|
|
|
|
if not hasattr(self, "cosine_label"):
|
|
|
|
self.cosine_label = TexMobject("\\cos(x)")
|
|
|
|
self.cosine_label.to_corner(UP+LEFT)
|
|
|
|
derivative = TexMobject(
|
|
|
|
"{d(", "\\cos", ")", "\\over", "dx}", "(0)",
|
|
|
|
)
|
|
|
|
derivative.highlight_by_tex("\\cos", self.colors[0])
|
|
|
|
derivative.scale(0.7)
|
|
|
|
derivative.next_to(
|
|
|
|
self.cosine_label, DOWN,
|
|
|
|
buff = MED_LARGE_BUFF,
|
|
|
|
aligned_edge = LEFT
|
|
|
|
)
|
|
|
|
rhs = TexMobject("=", "-\\sin(0)", "=", "0")
|
|
|
|
rhs.highlight_by_tex("\\sin", self.colors[1])
|
|
|
|
rhs.scale(0.75)
|
|
|
|
rhs.next_to(
|
|
|
|
derivative, RIGHT,
|
|
|
|
align_using_submobjects = True
|
|
|
|
)
|
|
|
|
|
|
|
|
self.cosine_derivative = VGroup(derivative, rhs)
|
|
|
|
return self.cosine_derivative
|
|
|
|
|
|
|
|
def get_cosine_second_derivative(self):
|
|
|
|
if not hasattr(self, "cosine_derivative"):
|
|
|
|
self.get_cosine_derivative()
|
|
|
|
second_deriv = TexMobject(
|
2017-04-26 16:22:49 -07:00
|
|
|
"{d^2(", "\\cos", ")", "\\over", "dx^2}",
|
2017-04-26 11:26:37 -07:00
|
|
|
"(", "0", ")",
|
|
|
|
)
|
|
|
|
second_deriv.highlight_by_tex("cos", self.colors[0])
|
|
|
|
second_deriv.highlight_by_tex("-\\cos", self.colors[2])
|
|
|
|
second_deriv.scale(0.75)
|
|
|
|
second_deriv.add_background_rectangle()
|
|
|
|
second_deriv.next_to(
|
|
|
|
self.cosine_derivative, DOWN,
|
|
|
|
buff = MED_LARGE_BUFF,
|
|
|
|
aligned_edge = LEFT
|
|
|
|
)
|
|
|
|
rhs = TexMobject("=", "-\\cos(0)", "=", "-1")
|
|
|
|
rhs.highlight_by_tex("cos", self.colors[2])
|
|
|
|
rhs.scale(0.8)
|
|
|
|
rhs.next_to(
|
|
|
|
second_deriv, RIGHT,
|
|
|
|
align_using_submobjects = True
|
|
|
|
)
|
2017-04-26 16:22:49 -07:00
|
|
|
rhs.add_background_rectangle()
|
2017-04-26 11:26:37 -07:00
|
|
|
|
|
|
|
self.cosine_second_derivative = VGroup(second_deriv, rhs)
|
|
|
|
return self.cosine_second_derivative
|
|
|
|
|
|
|
|
class ReflectOnQuadraticApproximation(TeacherStudentsScene):
|
|
|
|
def construct(self):
|
|
|
|
self.show_example_approximation()
|
|
|
|
self.add_polynomial()
|
|
|
|
self.show_c0()
|
|
|
|
self.show_c1()
|
|
|
|
self.show_c2()
|
|
|
|
|
|
|
|
def show_example_approximation(self):
|
|
|
|
approx_at_x, approx_at_point = [
|
|
|
|
TexMobject(
|
|
|
|
"\\cos(", s, ")", "\\approx",
|
|
|
|
"1 - \\frac{1}{2}", "(", s, ")", "^2"
|
|
|
|
).next_to(self.get_students(), UP, 2)
|
|
|
|
for s in "x", "0.1",
|
|
|
|
]
|
|
|
|
approx_rhs = TexMobject("=", "0.995")
|
|
|
|
approx_rhs.next_to(approx_at_point, RIGHT)
|
|
|
|
real_result = TexMobject(
|
|
|
|
"\\cos(", "0.1", ")", "=",
|
|
|
|
"%.7f"%np.cos(0.1)
|
|
|
|
)
|
|
|
|
real_result.shift(
|
|
|
|
approx_rhs.get_part_by_tex("=").get_center() -\
|
|
|
|
real_result.get_part_by_tex("=").get_center()
|
|
|
|
)
|
|
|
|
for mob in approx_at_point, real_result:
|
|
|
|
mob.highlight_by_tex("0.1", YELLOW)
|
|
|
|
real_result.set_fill(opacity = 0)
|
|
|
|
|
|
|
|
self.play(
|
|
|
|
Write(approx_at_x, run_time = 2),
|
|
|
|
self.teacher.change_mode, "raise_right_hand"
|
|
|
|
)
|
|
|
|
self.dither(2)
|
|
|
|
self.play(ReplacementTransform(
|
|
|
|
approx_at_x, approx_at_point,
|
|
|
|
))
|
|
|
|
self.dither()
|
|
|
|
self.play(Write(approx_rhs))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(
|
|
|
|
real_result.shift, 1.5*DOWN,
|
|
|
|
real_result.set_fill, None, 1,
|
|
|
|
)
|
|
|
|
self.change_student_modes(*["hooray"]*3)
|
|
|
|
self.dither(2)
|
|
|
|
self.change_student_modes(
|
|
|
|
*["plain"]*3,
|
|
|
|
added_anims = map(FadeOut, [
|
|
|
|
approx_at_point, approx_rhs, real_result
|
|
|
|
]),
|
|
|
|
look_at_arg = approx_at_x
|
|
|
|
)
|
|
|
|
|
|
|
|
def add_polynomial(self):
|
|
|
|
polynomial = self.get_polynomial()
|
|
|
|
const_terms = polynomial.get_parts_by_tex("c")
|
|
|
|
|
|
|
|
self.play(
|
|
|
|
Write(polynomial),
|
|
|
|
self.teacher.change, "pondering"
|
|
|
|
)
|
|
|
|
self.dither(2)
|
|
|
|
self.play(*[
|
|
|
|
ApplyMethod(
|
|
|
|
const.shift, MED_LARGE_BUFF*UP,
|
|
|
|
run_time = 2,
|
|
|
|
rate_func = squish_rate_func(there_and_back, a, a+0.7)
|
|
|
|
)
|
|
|
|
for const, a in zip(const_terms, np.linspace(0, 0.3, len(const_terms)))
|
|
|
|
])
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
self.const_terms = const_terms
|
|
|
|
self.polynomial = polynomial
|
|
|
|
|
|
|
|
def show_c0(self):
|
|
|
|
c0 = self.polynomial.get_part_by_tex("c_0")
|
|
|
|
c0.save_state()
|
|
|
|
equation = TexMobject("P(0) = \\cos(0)")
|
|
|
|
equation.to_corner(UP+RIGHT)
|
|
|
|
new_polynomial = self.get_polynomial(c0 = "1")
|
|
|
|
|
|
|
|
self.play(c0.shift, UP)
|
|
|
|
self.play(Write(equation))
|
|
|
|
self.dither()
|
|
|
|
self.play(Transform(self.polynomial, new_polynomial))
|
|
|
|
self.play(FadeOut(equation))
|
|
|
|
|
|
|
|
def show_c1(self):
|
|
|
|
c1 = self.polynomial.get_part_by_tex("c_1")
|
|
|
|
c1.save_state()
|
|
|
|
equation = TexMobject(
|
|
|
|
"\\frac{dP}{dx}(0) = \\frac{d(\\cos)}{dx}(0)"
|
|
|
|
)
|
|
|
|
equation.to_corner(UP+RIGHT)
|
|
|
|
new_polynomial = self.get_polynomial(c0 = "1", c1 = "0")
|
|
|
|
|
|
|
|
self.play(c1.shift, UP)
|
|
|
|
self.play(Write(equation))
|
|
|
|
self.dither()
|
|
|
|
self.play(Transform(self.polynomial, new_polynomial))
|
|
|
|
self.dither()
|
|
|
|
self.play(FadeOut(equation))
|
|
|
|
|
|
|
|
def show_c2(self):
|
|
|
|
c2 = self.polynomial.get_part_by_tex("c_2")
|
|
|
|
c2.save_state()
|
|
|
|
equation = TexMobject(
|
|
|
|
"\\frac{d^2 P}{dx^2}(0) = \\frac{d^2(\\cos)}{dx^2}(0)"
|
|
|
|
)
|
|
|
|
equation.to_corner(UP+RIGHT)
|
|
|
|
alt_c2_tex = "\\text{\\tiny $\\left(-\\frac{1}{2}\\right)$}"
|
|
|
|
new_polynomial = self.get_polynomial(
|
|
|
|
c0 = "1", c1 = "0", c2 = alt_c2_tex
|
|
|
|
)
|
|
|
|
new_polynomial.get_part_by_tex(alt_c2_tex).shift(SMALL_BUFF*UP)
|
|
|
|
|
|
|
|
self.play(c2.shift, UP)
|
|
|
|
self.play(FadeIn(equation))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(Transform(self.polynomial, new_polynomial))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(FadeOut(equation))
|
|
|
|
|
|
|
|
#####
|
|
|
|
|
|
|
|
def get_polynomial(self, c0 = "c_0", c1 = "c_1", c2 = "c_2"):
|
|
|
|
polynomial = TexMobject(
|
|
|
|
"P(x) = ", c0, "+", c1, "x", "+", c2, "x^2"
|
|
|
|
)
|
|
|
|
colors = ConstructQuadraticApproximation.CONFIG["colors"]
|
|
|
|
for tex, color in zip([c0, c1, c2], colors):
|
|
|
|
polynomial.highlight_by_tex(tex, color, substring = False)
|
|
|
|
|
|
|
|
polynomial.next_to(self.teacher, UP, LARGE_BUFF)
|
|
|
|
polynomial.to_edge(RIGHT)
|
|
|
|
return polynomial
|
|
|
|
|
|
|
|
class ReflectionOnQuadraticSupplement(ConstructQuadraticApproximation):
|
|
|
|
def construct(self):
|
|
|
|
self.setup_axes()
|
|
|
|
self.add(self.get_graph(np.cos, color = self.colors[0]))
|
|
|
|
quadratic_graph = self.get_quadratic_graph()
|
|
|
|
self.add(quadratic_graph)
|
|
|
|
|
|
|
|
self.dither()
|
|
|
|
for c0 in 0, 2, 1:
|
|
|
|
self.change_quadratic_graph(
|
|
|
|
quadratic_graph,
|
|
|
|
c0 = c0
|
|
|
|
)
|
|
|
|
self.dither(2)
|
|
|
|
for c1 in 1, -1, 0:
|
|
|
|
self.change_quadratic_graph(
|
|
|
|
quadratic_graph,
|
|
|
|
c1 = c1
|
|
|
|
)
|
|
|
|
self.dither(2)
|
|
|
|
for c2 in -0.1, -1, -0.5:
|
|
|
|
self.change_quadratic_graph(
|
|
|
|
quadratic_graph,
|
|
|
|
c2 = c2
|
|
|
|
)
|
|
|
|
self.dither(2)
|
|
|
|
|
|
|
|
class SimilarityOfChangeBehavior(ConstructQuadraticApproximation):
|
|
|
|
def construct(self):
|
|
|
|
colors = [YELLOW, WHITE]
|
|
|
|
max_x = np.pi/2
|
|
|
|
|
|
|
|
self.setup_axes()
|
|
|
|
cosine_graph = self.get_graph(np.cos, color = self.colors[0])
|
|
|
|
quadratic_graph = self.get_quadratic_graph()
|
|
|
|
graphs = VGroup(cosine_graph, quadratic_graph)
|
|
|
|
dots = VGroup()
|
|
|
|
for graph, color in zip(graphs, colors):
|
|
|
|
dot = Dot(color = color)
|
|
|
|
dot.move_to(self.input_to_graph_point(0, graph))
|
|
|
|
dot.graph = graph
|
|
|
|
dots.add(dot)
|
|
|
|
|
|
|
|
def update_dot(dot, alpha):
|
|
|
|
x = interpolate(0, max_x, alpha)
|
|
|
|
dot.move_to(self.input_to_graph_point(x, dot.graph))
|
|
|
|
dot_anims = [
|
|
|
|
UpdateFromAlphaFunc(dot, update_dot, run_time = 3)
|
|
|
|
for dot in dots
|
|
|
|
]
|
|
|
|
tangent_lines = VGroup(*[
|
|
|
|
self.get_tangent_line(0, graph, color)
|
|
|
|
for graph, color in zip(graphs, colors)
|
|
|
|
])
|
|
|
|
tangent_line_movements = [
|
|
|
|
self.get_tangent_line_change_anim(
|
|
|
|
line, max_x, graph,
|
|
|
|
run_time = 5,
|
|
|
|
)
|
|
|
|
for line, graph in zip(tangent_lines, graphs)
|
|
|
|
]
|
|
|
|
|
|
|
|
self.add(cosine_graph, quadratic_graph)
|
|
|
|
self.play(FadeIn(dots))
|
|
|
|
self.play(*dot_anims)
|
|
|
|
self.play(
|
|
|
|
FadeIn(tangent_lines),
|
|
|
|
FadeOut(dots)
|
|
|
|
)
|
|
|
|
self.play(*tangent_line_movements + dot_anims, run_time = 6)
|
|
|
|
self.play(*map(FadeOut, [tangent_lines, dots]))
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
class MoreTerms(TeacherStudentsScene):
|
|
|
|
def construct(self):
|
|
|
|
self.teacher_says(
|
|
|
|
"More terms!",
|
|
|
|
target_mode = "surprised",
|
|
|
|
)
|
|
|
|
self.change_student_modes(*["hooray"]*3)
|
|
|
|
self.dither(3)
|
|
|
|
|
|
|
|
class CubicAndQuarticApproximations(ConstructQuadraticApproximation):
|
|
|
|
CONFIG = {
|
|
|
|
"colors": [BLUE, YELLOW, GREEN, RED, MAROON_B],
|
|
|
|
}
|
|
|
|
def construct(self):
|
|
|
|
self.add_background()
|
|
|
|
self.take_third_derivative_of_cubic()
|
|
|
|
self.show_third_derivative_of_cosine()
|
2017-04-26 16:22:49 -07:00
|
|
|
self.set_c3_to_zero()
|
|
|
|
self.show_cubic_curves()
|
2017-04-26 11:26:37 -07:00
|
|
|
self.add_quartic_term()
|
|
|
|
self.show_fourth_derivative_of_cosine()
|
|
|
|
self.take_fourth_derivative_of_quartic()
|
|
|
|
self.solve_for_c4()
|
|
|
|
self.show_quartic_approximation()
|
2017-04-25 22:14:16 -07:00
|
|
|
|
|
|
|
|
2017-04-26 11:26:37 -07:00
|
|
|
def add_background(self):
|
|
|
|
self.setup_axes()
|
|
|
|
self.cosine_graph = self.get_graph(
|
|
|
|
np.cos, color = self.colors[0]
|
|
|
|
)
|
|
|
|
self.quadratic_graph = self.get_quadratic_graph()
|
|
|
|
self.big_rect = Rectangle(
|
|
|
|
height = 2*SPACE_HEIGHT,
|
|
|
|
width = 2*SPACE_WIDTH,
|
|
|
|
stroke_width = 0,
|
|
|
|
fill_color = BLACK,
|
|
|
|
fill_opacity = 0.5,
|
|
|
|
)
|
|
|
|
self.add(
|
|
|
|
self.cosine_graph, self.quadratic_graph,
|
|
|
|
self.big_rect
|
|
|
|
)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-26 11:26:37 -07:00
|
|
|
self.cosine_label = TexMobject("\\cos", "(0)", "=1")
|
|
|
|
self.cosine_label.highlight_by_tex("cos", self.colors[0])
|
|
|
|
self.cosine_label.scale(0.75)
|
|
|
|
self.cosine_label.to_corner(UP+LEFT)
|
|
|
|
self.add(self.cosine_label)
|
|
|
|
self.add(self.get_cosine_derivative())
|
|
|
|
self.add(self.get_cosine_second_derivative())
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-26 11:26:37 -07:00
|
|
|
self.polynomial = TexMobject(
|
|
|
|
"P(x)=", "1", "-\\frac{1}{2}", "x^2"
|
|
|
|
)
|
|
|
|
self.polynomial.highlight_by_tex("1", self.colors[0])
|
|
|
|
self.polynomial.highlight_by_tex("-\\frac{1}{2}", self.colors[2])
|
|
|
|
self.polynomial.to_corner(UP+RIGHT)
|
|
|
|
self.polynomial.quadratic_part = VGroup(
|
|
|
|
*self.polynomial[1:]
|
|
|
|
)
|
|
|
|
self.add(self.polynomial)
|
|
|
|
|
|
|
|
def take_third_derivative_of_cubic(self):
|
|
|
|
polynomial = self.polynomial
|
|
|
|
plus_cubic_term = TexMobject("+\\,", "c_3", "x^3")
|
|
|
|
plus_cubic_term.next_to(polynomial, RIGHT)
|
|
|
|
plus_cubic_term.to_edge(RIGHT, buff = LARGE_BUFF)
|
|
|
|
plus_cubic_term.highlight_by_tex("c_3", self.colors[3])
|
|
|
|
plus_cubic_copy = plus_cubic_term.copy()
|
|
|
|
|
|
|
|
polynomial.generate_target()
|
|
|
|
polynomial.target.next_to(plus_cubic_term, LEFT)
|
|
|
|
|
|
|
|
self.play(FocusOn(polynomial))
|
|
|
|
self.play(
|
|
|
|
MoveToTarget(polynomial),
|
|
|
|
GrowFromCenter(plus_cubic_term)
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
brace = Brace(polynomial.quadratic_part, DOWN)
|
|
|
|
third_derivative = TexMobject(
|
|
|
|
"\\frac{d^3 P}{dx^3}(x) = ", "0"
|
|
|
|
)
|
|
|
|
third_derivative.shift(
|
|
|
|
brace.get_bottom() + MED_SMALL_BUFF*DOWN -\
|
|
|
|
third_derivative.get_part_by_tex("0").get_top()
|
|
|
|
)
|
|
|
|
|
|
|
|
self.play(Write(third_derivative[0]))
|
|
|
|
self.play(GrowFromCenter(brace))
|
|
|
|
self.play(ReplacementTransform(
|
|
|
|
polynomial.quadratic_part.copy(),
|
|
|
|
VGroup(third_derivative[1])
|
|
|
|
))
|
|
|
|
self.dither(2)
|
|
|
|
self.play(plus_cubic_copy.next_to, third_derivative, RIGHT)
|
|
|
|
derivative_term = self.take_derivatives_of_monomial(
|
|
|
|
VGroup(*plus_cubic_copy[1:])
|
|
|
|
)
|
2017-04-26 16:22:49 -07:00
|
|
|
third_derivative.add(plus_cubic_copy[0], derivative_term)
|
2017-04-26 11:26:37 -07:00
|
|
|
|
2017-04-26 16:22:49 -07:00
|
|
|
self.plus_cubic_term = plus_cubic_term
|
2017-04-26 11:26:37 -07:00
|
|
|
self.polynomial_third_derivative = third_derivative
|
2017-04-26 16:22:49 -07:00
|
|
|
self.polynomial_third_derivative_brace = brace
|
2017-04-26 11:26:37 -07:00
|
|
|
|
|
|
|
def show_third_derivative_of_cosine(self):
|
2017-04-26 16:22:49 -07:00
|
|
|
cosine_third_derivative = self.get_cosine_third_derivative()
|
|
|
|
dot = Dot(fill_opacity = 0.5)
|
|
|
|
dot.move_to(self.polynomial_third_derivative)
|
|
|
|
|
|
|
|
self.play(
|
|
|
|
dot.move_to, cosine_third_derivative,
|
|
|
|
dot.set_fill, None, 0
|
|
|
|
)
|
|
|
|
self.play(ReplacementTransform(
|
|
|
|
self.cosine_second_derivative.copy(),
|
|
|
|
cosine_third_derivative
|
|
|
|
))
|
|
|
|
self.dither(2)
|
|
|
|
dot.set_fill(opacity = 0.5)
|
|
|
|
self.play(
|
|
|
|
dot.move_to, self.polynomial_third_derivative.get_right(),
|
|
|
|
dot.set_fill, None, 0,
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
def set_c3_to_zero(self):
|
|
|
|
c3s = VGroup(
|
|
|
|
self.polynomial_third_derivative[-1][-1],
|
|
|
|
self.plus_cubic_term.get_part_by_tex("c_3")
|
|
|
|
)
|
|
|
|
zeros = VGroup(*[
|
|
|
|
TexMobject("0").move_to(c3)
|
|
|
|
for c3 in c3s
|
|
|
|
])
|
|
|
|
zeros.highlight(self.colors[3])
|
|
|
|
zeros.shift(SMALL_BUFF*UP)
|
|
|
|
zeros[0].shift(0.25*SMALL_BUFF*(UP+LEFT))
|
|
|
|
|
|
|
|
self.play(Transform(
|
|
|
|
c3s, zeros,
|
|
|
|
run_time = 2,
|
|
|
|
submobject_mode = "lagged_start"
|
|
|
|
))
|
|
|
|
self.dither(2)
|
|
|
|
|
|
|
|
def show_cubic_curves(self):
|
|
|
|
real_graph = self.quadratic_graph
|
|
|
|
real_graph.save_state()
|
|
|
|
graph = real_graph.copy()
|
|
|
|
graph.save_state()
|
|
|
|
alt_graphs = [
|
|
|
|
self.get_graph(func, color = real_graph.get_color())
|
|
|
|
for func in [
|
|
|
|
lambda x : x*(x-1)*(x+1),
|
|
|
|
lambda x : 1 - 0.5*(x**2) + 0.2*(x**3)
|
|
|
|
]
|
|
|
|
]
|
|
|
|
|
|
|
|
self.play(FadeIn(graph))
|
|
|
|
real_graph.set_stroke(width = 0)
|
|
|
|
for alt_graph in alt_graphs:
|
|
|
|
self.play(Transform(graph, alt_graph, run_time = 2))
|
|
|
|
self.dither()
|
|
|
|
self.play(graph.restore, run_time = 2)
|
|
|
|
real_graph.restore()
|
|
|
|
self.play(FadeOut(graph))
|
2017-04-26 11:26:37 -07:00
|
|
|
|
|
|
|
def add_quartic_term(self):
|
2017-04-26 16:22:49 -07:00
|
|
|
polynomial = self.polynomial
|
|
|
|
plus_quartic_term = TexMobject("+\\,", "c_4", "x^4")
|
|
|
|
plus_quartic_term.next_to(polynomial, RIGHT)
|
|
|
|
plus_quartic_term.highlight_by_tex("c_4", self.colors[4])
|
|
|
|
|
|
|
|
self.play(*map(FadeOut, [
|
|
|
|
self.plus_cubic_term,
|
|
|
|
self.polynomial_third_derivative,
|
|
|
|
self.polynomial_third_derivative_brace,
|
|
|
|
]))
|
|
|
|
self.play(Write(plus_quartic_term))
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
self.plus_quartic_term = plus_quartic_term
|
2017-04-26 11:26:37 -07:00
|
|
|
|
|
|
|
def show_fourth_derivative_of_cosine(self):
|
2017-04-26 16:22:49 -07:00
|
|
|
cosine_fourth_derivative = self.get_cosine_fourth_derivative()
|
|
|
|
|
|
|
|
self.play(FocusOn(self.cosine_third_derivative))
|
|
|
|
self.play(ReplacementTransform(
|
|
|
|
self.cosine_third_derivative.copy(),
|
|
|
|
cosine_fourth_derivative
|
|
|
|
))
|
|
|
|
self.dither(3)
|
2017-04-26 11:26:37 -07:00
|
|
|
|
|
|
|
def take_fourth_derivative_of_quartic(self):
|
2017-04-26 16:22:49 -07:00
|
|
|
quartic_term = VGroup(*self.plus_quartic_term.copy()[1:])
|
|
|
|
fourth_deriv_lhs = TexMobject("{d^4 P \\over dx^4}(x)", "=")
|
|
|
|
fourth_deriv_lhs.next_to(
|
|
|
|
self.polynomial, DOWN,
|
|
|
|
buff = MED_LARGE_BUFF,
|
|
|
|
aligned_edge = LEFT
|
|
|
|
)
|
|
|
|
alt_rhs = TexMobject("=", "24 \\cdot", "c_4")
|
|
|
|
alt_rhs.next_to(
|
|
|
|
fourth_deriv_lhs.get_part_by_tex("="), DOWN,
|
|
|
|
buff = LARGE_BUFF,
|
|
|
|
aligned_edge = LEFT
|
|
|
|
)
|
|
|
|
alt_rhs.highlight_by_tex("c_4", self.colors[4])
|
|
|
|
|
|
|
|
self.play(Write(fourth_deriv_lhs))
|
|
|
|
self.play(
|
|
|
|
quartic_term.next_to, fourth_deriv_lhs, RIGHT
|
|
|
|
)
|
|
|
|
self.dither()
|
|
|
|
fourth_deriv_rhs = self.take_derivatives_of_monomial(quartic_term)
|
|
|
|
self.dither()
|
|
|
|
self.play(Write(alt_rhs))
|
|
|
|
self.dither()
|
|
|
|
|
|
|
|
self.fourth_deriv_lhs = fourth_deriv_lhs
|
|
|
|
self.fourth_deriv_rhs = fourth_deriv_rhs
|
|
|
|
self.fourth_deriv_alt_rhs = alt_rhs
|
2017-04-26 11:26:37 -07:00
|
|
|
|
|
|
|
def solve_for_c4(self):
|
2017-04-26 16:22:49 -07:00
|
|
|
c4s = VGroup(
|
|
|
|
self.fourth_deriv_alt_rhs.get_part_by_tex("c_4"),
|
|
|
|
self.fourth_deriv_rhs[-1],
|
|
|
|
self.plus_quartic_term.get_part_by_tex("c_4")
|
|
|
|
)
|
|
|
|
fraction = TexMobject("\\text{\\small $\\frac{1}{24}$}")
|
|
|
|
fraction.highlight(self.colors[4])
|
|
|
|
fractions = VGroup(*[
|
|
|
|
fraction.copy().move_to(c4, LEFT)
|
|
|
|
for c4 in c4s
|
|
|
|
])
|
|
|
|
fractions.shift(SMALL_BUFF*UP)
|
|
|
|
x_to_4 = self.plus_quartic_term.get_part_by_tex("x^4")
|
|
|
|
x_to_4.generate_target()
|
|
|
|
x_to_4.target.shift(MED_SMALL_BUFF*RIGHT)
|
|
|
|
|
|
|
|
self.play(
|
|
|
|
Transform(
|
|
|
|
c4s, fractions,
|
|
|
|
run_time = 3,
|
|
|
|
submobject_mode = "lagged_start",
|
|
|
|
),
|
|
|
|
MoveToTarget(x_to_4, run_time = 2)
|
|
|
|
)
|
|
|
|
self.dither(3)
|
2017-04-26 11:26:37 -07:00
|
|
|
|
|
|
|
def show_quartic_approximation(self):
|
2017-04-26 16:22:49 -07:00
|
|
|
real_graph = self.quadratic_graph
|
|
|
|
graph = real_graph.copy()
|
|
|
|
quartic_graph = self.get_graph(
|
|
|
|
lambda x : 1 - (x**2)/2.0 + (x**4)/24.0,
|
|
|
|
color = graph.get_color(),
|
|
|
|
)
|
|
|
|
tex_mobs = VGroup(*[
|
|
|
|
self.polynomial,
|
|
|
|
self.fourth_deriv_rhs,
|
|
|
|
self.fourth_deriv_alt_rhs,
|
|
|
|
self.cosine_label,
|
|
|
|
self.cosine_derivative,
|
|
|
|
self.cosine_second_derivative,
|
|
|
|
self.cosine_third_derivative[1],
|
|
|
|
])
|
|
|
|
for tex_mob in tex_mobs:
|
|
|
|
tex_mob.add_to_back(BackgroundRectangle(tex_mob))
|
|
|
|
|
|
|
|
|
|
|
|
self.play(FadeIn(graph))
|
|
|
|
real_graph.set_stroke(width = 0)
|
|
|
|
self.play(
|
|
|
|
Transform(
|
|
|
|
graph, quartic_graph,
|
|
|
|
run_time = 3,
|
|
|
|
),
|
|
|
|
Animation(tex_mobs)
|
|
|
|
)
|
|
|
|
self.dither(3)
|
2017-04-26 11:26:37 -07:00
|
|
|
|
|
|
|
|
|
|
|
####
|
|
|
|
|
2017-04-26 16:22:49 -07:00
|
|
|
def take_derivatives_of_monomial(self, term, *added_anims):
|
2017-04-26 11:26:37 -07:00
|
|
|
"""
|
|
|
|
Must be a group of pure TexMobjects,
|
|
|
|
last part must be of the form x^n
|
|
|
|
"""
|
|
|
|
n = int(term[-1].get_tex_string()[-1])
|
|
|
|
curr_term = term
|
2017-04-26 16:22:49 -07:00
|
|
|
added_anims_iter = iter(added_anims)
|
2017-04-26 11:26:37 -07:00
|
|
|
for k in range(n, 0, -1):
|
|
|
|
exponent = curr_term[-1][-1]
|
|
|
|
exponent_copy = exponent.copy()
|
|
|
|
front_num = TexMobject("%d \\cdot"%k)
|
|
|
|
front_num.move_to(curr_term[0][0], DOWN+LEFT)
|
|
|
|
|
|
|
|
new_monomial = TexMobject("x^%d"%(k-1))
|
|
|
|
new_monomial.replace(curr_term[-1])
|
|
|
|
Transform(curr_term[-1], new_monomial).update(1)
|
|
|
|
curr_term.generate_target()
|
|
|
|
curr_term.target.shift(
|
|
|
|
(front_num.get_width()+SMALL_BUFF)*RIGHT
|
|
|
|
)
|
|
|
|
curr_term[-1][-1].set_fill(opacity = 0)
|
|
|
|
|
2017-04-26 16:22:49 -07:00
|
|
|
possibly_added_anims = []
|
|
|
|
try:
|
|
|
|
possibly_added_anims.append(added_anims_iter.next())
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
|
2017-04-26 11:26:37 -07:00
|
|
|
self.play(
|
|
|
|
ApplyMethod(
|
|
|
|
exponent_copy.replace, front_num[0],
|
|
|
|
path_arc = np.pi,
|
|
|
|
),
|
|
|
|
Write(
|
|
|
|
front_num[1],
|
|
|
|
rate_func = squish_rate_func(smooth, 0.5, 1)
|
|
|
|
),
|
|
|
|
MoveToTarget(curr_term),
|
2017-04-26 16:22:49 -07:00
|
|
|
*possibly_added_anims,
|
2017-04-26 11:26:37 -07:00
|
|
|
run_time = 2
|
|
|
|
)
|
|
|
|
self.remove(exponent_copy)
|
|
|
|
self.add(front_num)
|
|
|
|
curr_term = VGroup(front_num, *curr_term)
|
|
|
|
self.dither()
|
|
|
|
self.play(FadeOut(curr_term[-1]))
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-26 11:26:37 -07:00
|
|
|
return VGroup(*curr_term[:-1])
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-26 16:22:49 -07:00
|
|
|
def get_cosine_third_derivative(self):
|
|
|
|
if not hasattr(self, "cosine_second_derivative"):
|
|
|
|
self.get_cosine_second_derivative()
|
|
|
|
third_deriv = TexMobject(
|
|
|
|
"{d^3(", "\\cos", ")", "\\over", "dx^3}",
|
|
|
|
"(", "0", ")",
|
|
|
|
)
|
|
|
|
third_deriv.highlight_by_tex("cos", self.colors[0])
|
|
|
|
third_deriv.highlight_by_tex("-\\cos", self.colors[3])
|
|
|
|
third_deriv.scale(0.75)
|
|
|
|
third_deriv.add_background_rectangle()
|
|
|
|
third_deriv.next_to(
|
|
|
|
self.cosine_second_derivative, DOWN,
|
|
|
|
buff = MED_LARGE_BUFF,
|
|
|
|
aligned_edge = LEFT
|
|
|
|
)
|
|
|
|
rhs = TexMobject("=", "\\sin(0)", "=", "0")
|
|
|
|
rhs.highlight_by_tex("sin", self.colors[3])
|
|
|
|
rhs.scale(0.8)
|
|
|
|
rhs.next_to(
|
|
|
|
third_deriv, RIGHT,
|
|
|
|
align_using_submobjects = True
|
|
|
|
)
|
|
|
|
rhs.add_background_rectangle()
|
|
|
|
rhs.background_rectangle.scale_in_place(1.2)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-26 16:22:49 -07:00
|
|
|
self.cosine_third_derivative = VGroup(third_deriv, rhs)
|
|
|
|
return self.cosine_third_derivative
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-26 16:22:49 -07:00
|
|
|
def get_cosine_fourth_derivative(self):
|
|
|
|
if not hasattr(self, "cosine_third_derivative"):
|
|
|
|
self.get_cosine_third_derivative()
|
|
|
|
fourth_deriv = TexMobject(
|
|
|
|
"{d^4(", "\\cos", ")", "\\over", "dx^4}",
|
|
|
|
"(", "0", ")",
|
|
|
|
)
|
|
|
|
fourth_deriv.highlight_by_tex("cos", self.colors[0])
|
|
|
|
fourth_deriv.scale(0.75)
|
|
|
|
fourth_deriv.add_background_rectangle()
|
|
|
|
fourth_deriv.next_to(
|
|
|
|
self.cosine_third_derivative, DOWN,
|
|
|
|
buff = MED_LARGE_BUFF,
|
|
|
|
aligned_edge = LEFT
|
|
|
|
)
|
|
|
|
rhs = TexMobject("=", "\\cos(0)", "=", "1")
|
|
|
|
rhs.highlight_by_tex("cos", self.colors[4])
|
|
|
|
rhs.scale(0.8)
|
|
|
|
rhs.next_to(
|
|
|
|
fourth_deriv, RIGHT,
|
|
|
|
align_using_submobjects = True
|
|
|
|
)
|
|
|
|
rhs.add_background_rectangle()
|
|
|
|
rhs.background_rectangle.scale_in_place(1.2)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-26 16:22:49 -07:00
|
|
|
self.cosine_fourth_derivative = VGroup(fourth_deriv, rhs)
|
|
|
|
return self.cosine_fourth_derivative
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-26 16:22:49 -07:00
|
|
|
class NoticeAFewThings(TeacherStudentsScene):
|
|
|
|
def construct(self):
|
|
|
|
self.teacher_says(
|
|
|
|
"Notice a few things",
|
|
|
|
target_mode = "hesitant"
|
|
|
|
)
|
|
|
|
self.dither(3)
|
|
|
|
|
|
|
|
class FactorialTerms(CubicAndQuarticApproximations):
|
|
|
|
def construct(self):
|
|
|
|
lhs_list = [
|
|
|
|
TexMobject(
|
|
|
|
"{d%s"%s, "\\over", "dx%s}"%s, "(", "c_8", "x^8", ")="
|
|
|
|
)
|
|
|
|
for i in range(9)
|
|
|
|
for s in ["^%d"%i if i > 1 else ""]
|
|
|
|
]
|
|
|
|
for lhs in lhs_list:
|
|
|
|
lhs.highlight_by_tex("c_8", YELLOW)
|
|
|
|
lhs.next_to(ORIGIN, LEFT)
|
|
|
|
lhs_list[0].set_fill(opacity = 0)
|
|
|
|
added_anims = [
|
|
|
|
ReplacementTransform(
|
|
|
|
start_lhs, target_lhs,
|
|
|
|
rate_func = squish_rate_func(smooth, 0, 0.5)
|
|
|
|
)
|
|
|
|
for start_lhs, target_lhs in zip(lhs_list, lhs_list[1:])
|
|
|
|
]
|
|
|
|
|
|
|
|
term = TexMobject("c_8", "x^8")
|
|
|
|
term.next_to(lhs[-1], RIGHT)
|
|
|
|
term.highlight_by_tex("c_8", YELLOW)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-26 16:22:49 -07:00
|
|
|
self.add(term)
|
|
|
|
self.dither()
|
|
|
|
result = self.take_derivatives_of_monomial(term, *added_anims)
|
2017-04-25 22:14:16 -07:00
|
|
|
|
2017-04-26 16:22:49 -07:00
|
|
|
factorial_term = VGroup(*result[:-1])
|
|
|
|
brace = Brace(factorial_term)
|
|
|
|
eight_factorial = brace.get_text("$8!$")
|
|
|
|
|
|
|
|
coefficient = result[-1]
|
|
|
|
words = TextMobject(
|
|
|
|
"Set", "$c_8$",
|
|
|
|
"$ = \\frac{\\text{Desired derivative value}}{8!}"
|
|
|
|
)
|
|
|
|
words.highlight_by_tex("c_8", YELLOW)
|
|
|
|
words.shift(2*UP)
|
|
|
|
|
|
|
|
self.play(
|
|
|
|
GrowFromCenter(brace),
|
|
|
|
Write(eight_factorial)
|
|
|
|
)
|
|
|
|
self.play(
|
|
|
|
ReplacementTransform(
|
|
|
|
coefficient.copy(),
|
|
|
|
words.get_part_by_tex("c_8")
|
|
|
|
),
|
|
|
|
Write(words),
|
|
|
|
)
|
|
|
|
self.dither(2)
|
|
|
|
|
|
|
|
class HigherTermsDontMessUpLowerTerms(Scene):
|
|
|
|
def construct(self):
|
|
|
|
pass
|
2017-04-25 22:14:16 -07:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|