3b1b-manim/nn/part3.py

1407 lines
44 KiB
Python
Raw Normal View History

2017-10-19 14:32:26 -07:00
from nn.network import *
from nn.part1 import *
from nn.part2 import *
class LayOutPlan(Scene):
def construct(self):
title = TextMobject("Plan")
title.scale(1.5)
title.to_edge(UP)
h_line = Line(LEFT, RIGHT).scale(SPACE_WIDTH - 1)
h_line.next_to(title, DOWN)
items = BulletedList(
"Recap",
"Intuitive walkthrough",
"Derivatives in \\\\ computational graphs",
)
items.to_edge(LEFT, buff = LARGE_BUFF)
self.add(items)
rect = ScreenRectangle()
rect.scale_to_fit_width(2*SPACE_WIDTH - items.get_width() - 2)
rect.next_to(items, RIGHT, MED_LARGE_BUFF)
self.play(
Write(title),
ShowCreation(h_line),
ShowCreation(rect),
run_time = 2
)
for i in range(len(items)):
self.play(items.fade_all_but, i)
self.dither(2)
class TODOInsertFeedForwardAnimations(TODOStub):
CONFIG = {
"message" : "Insert Feed Forward Animations"
}
class TODOInsertStepsDownCostSurface(TODOStub):
CONFIG = {
"message" : "Insert Steps Down Cost Surface"
}
class TODOInsertDefinitionOfCostFunction(TODOStub):
CONFIG = {
"message" : "Insert Definition of cost function"
}
class TODOInsertGradientNudging(TODOStub):
CONFIG = {
"message" : "Insert GradientNudging"
}
class InterpretGradientComponents(GradientNudging):
CONFIG = {
"network_mob_config" : {
"layer_to_layer_buff" : 3,
},
"stroke_width_exp" : 2,
"n_decimals" : 6,
"n_steps" : 3,
"start_cost" : 3.48,
"delta_cost" : -0.21,
}
def construct(self):
self.setup_network()
self.add_cost()
self.add_gradient()
self.change_weights_repeatedly()
self.ask_about_high_dimensions()
self.circle_magnitudes()
self.isolate_particular_weights()
self.shift_cost_expression()
self.tweak_individual_weights()
def setup_network(self):
self.network_mob.scale(0.55)
self.network_mob.to_corner(UP+RIGHT)
self.color_network_edges()
def add_cost(self):
rect = SurroundingRectangle(self.network_mob)
rect.highlight(RED)
arrow = Vector(DOWN, color = RED)
arrow.shift(rect.get_bottom())
cost = DecimalNumber(self.start_cost)
cost.highlight(RED)
cost.next_to(arrow, DOWN)
cost_expression = TexMobject(
"C(", "w_0, w_1, \\dots, w_{13{,}001}", ")", "="
)
for tex in "()":
cost_expression.highlight_by_tex(tex, RED)
cost_expression.next_to(cost, DOWN)
cost_group = VGroup(cost_expression, cost)
cost_group.arrange_submobjects(RIGHT)
cost_group.next_to(arrow, DOWN)
self.add(rect, arrow, cost_group)
self.set_variables_as_attrs(
cost, cost_expression, cost_group,
network_rect = rect
)
def change_weights_repeatedly(self):
decimals = self.grad_vect.decimals
grad_terms = self.grad_vect.contents
edges = VGroup(*reversed(list(
it.chain(*self.network_mob.edge_groups)
)))
cost = self.cost
for x in range(self.n_steps):
2017-10-23 15:48:05 -07:00
self.move_grad_terms_into_position(
grad_terms.copy(),
*self.get_weight_adjustment_anims(edges, cost)
)
self.play(*self.get_decimal_change_anims(decimals))
def ask_about_high_dimensions(self):
grad_vect = self.grad_vect
words = TextMobject(
"Direction in \\\\ ${13{,}002}$ dimensions?!?")
words.highlight(YELLOW)
words.move_to(grad_vect).to_edge(DOWN)
arrow = Arrow(
words.get_top(),
grad_vect.get_bottom(),
buff = SMALL_BUFF
)
randy = Randolph()
randy.scale(0.6)
randy.next_to(words, LEFT)
randy.shift_onto_screen()
self.play(
Write(words, run_time = 2),
GrowArrow(arrow),
)
self.play(FadeIn(randy))
self.play(randy.change, "confused", words)
self.play(Blink(randy))
self.dither()
self.play(*map(FadeOut, [randy, words, arrow]))
def circle_magnitudes(self):
rects = VGroup()
for decimal in self.grad_vect.decimals:
2017-10-23 15:48:05 -07:00
rects.add(SurroundingRectangle(VGroup(*decimal[-5:])))
rects.highlight(WHITE)
self.play(LaggedStart(ShowCreation, rects))
self.play(FadeOut(rects))
def isolate_particular_weights(self):
vect_contents = self.grad_vect.contents
w_terms = self.cost_expression[1]
edges = self.network_mob.edge_groups
edge1 = self.network_mob.layers[1].neurons[3].edges_in[0].copy()
edge2 = self.network_mob.layers[1].neurons[9].edges_in[15].copy()
VGroup(edge1, edge2).set_stroke(width = 4)
d1 = DecimalNumber(3.2)
d2 = DecimalNumber(0.1)
VGroup(edge1, d1).highlight(YELLOW)
VGroup(edge2, d2).highlight(MAROON_B)
new_vect_contents = VGroup(
TexMobject("\\vdots"),
d1, TexMobject("\\vdots"),
d2, TexMobject("\\vdots"),
)
new_vect_contents.arrange_submobjects(DOWN)
new_vect_contents.move_to(vect_contents)
new_w_terms = TexMobject(
"\\dots", "w_n", "\\dots", "w_k", "\\dots"
)
new_w_terms.move_to(w_terms, DOWN)
new_w_terms[1].highlight(d1.get_color())
new_w_terms[3].highlight(d2.get_color())
for d, edge in (d1, edge1), (d2, edge2):
d.arrow = Arrow(
d.get_right(), edge.get_center(),
color = d.get_color()
)
self.play(
FadeOut(vect_contents),
FadeIn(new_vect_contents),
FadeOut(w_terms),
FadeIn(new_w_terms),
edges.set_stroke, LIGHT_GREY, 0.35,
)
self.play(GrowArrow(d1.arrow))
self.play(ShowCreation(edge1))
self.dither()
self.play(GrowArrow(d2.arrow))
self.play(ShowCreation(edge2))
self.dither(2)
self.cost_expression.remove(w_terms)
self.cost_expression.add(new_w_terms)
self.set_variables_as_attrs(
edge1, edge2, new_w_terms,
new_decimals = VGroup(d1, d2)
)
def shift_cost_expression(self):
self.play(self.cost_group.shift, DOWN+0.5*LEFT)
def tweak_individual_weights(self):
cost = self.cost
cost_num = cost.number
edges = VGroup(self.edge1, self.edge2)
decimals = self.new_decimals
changes = (1.0, 1./32)
wn = self.new_w_terms[1]
wk = self.new_w_terms[3]
number_line_template = NumberLine(
x_min = -1,
x_max = 1,
tick_frequency = 0.25,
numbers_with_elongated_ticks = [],
color = WHITE
)
for term in wn, wk, cost:
term.number_line = number_line_template.copy()
term.brace = Brace(term.number_line, DOWN, buff = SMALL_BUFF)
group = VGroup(term.number_line, term.brace)
group.next_to(term, UP)
term.dot = Dot()
term.dot.highlight(term.get_color())
term.dot.move_to(term.number_line.get_center())
term.dot.save_state()
term.dot.move_to(term)
term.dot.set_fill(opacity = 0)
2017-10-23 15:48:05 -07:00
term.words = TextMobject("Nudge this weight")
term.words.scale(0.7)
term.words.next_to(term.number_line, UP, MED_SMALL_BUFF)
groups = [
VGroup(d, d.arrow, edge, w)
for d, edge, w in zip(decimals, edges, [wn, wk])
]
for group in groups:
group.save_state()
for i in range(2):
group1, group2 = groups[i], groups[1-i]
change = changes[i]
edge = edges[i]
w = group1[-1]
added_anims = []
if i == 0:
added_anims = [
GrowFromCenter(cost.brace),
ShowCreation(cost.number_line),
cost.dot.restore
]
self.play(
group1.restore,
group2.fade, 0.7,
GrowFromCenter(w.brace),
ShowCreation(w.number_line),
w.dot.restore,
2017-10-23 15:48:05 -07:00
Write(w.words, run_time = 1),
*added_anims
)
for x in range(2):
func = lambda a : interpolate(
cost_num, cost_num-change, a
)
self.play(
ChangingDecimal(cost, func),
cost.dot.shift, change*RIGHT,
w.dot.shift, 0.25*RIGHT,
edge.set_stroke, None, 8,
rate_func = lambda t : wiggle(t, 4),
run_time = 2,
)
self.dither()
2017-10-23 15:48:05 -07:00
self.play(*map(FadeOut, [
w.dot, w.brace, w.number_line, w.words
]))
######
2017-10-23 15:48:05 -07:00
def move_grad_terms_into_position(self, grad_terms, *added_anims):
cost_expression = self.cost_expression
w_terms = self.cost_expression[1]
points = VGroup(*[
VectorizedPoint()
for term in grad_terms
])
points.arrange_submobjects(RIGHT)
points.replace(w_terms, dim_to_match = 0)
grad_terms.generate_target()
grad_terms.target[len(grad_terms)/2].rotate(np.pi/2)
grad_terms.target.arrange_submobjects(RIGHT)
grad_terms.target.scale_to_fit_width(cost_expression.get_width())
grad_terms.target.next_to(cost_expression, DOWN)
words = TextMobject("Nudge weights")
words.scale(0.8)
words.next_to(grad_terms.target, DOWN)
self.play(
MoveToTarget(grad_terms),
FadeIn(words)
)
self.play(
Transform(
grad_terms, points,
remover = True,
submobject_mode = "lagged_start",
run_time = 1
),
2017-10-23 15:48:05 -07:00
FadeOut(words),
*added_anims
)
2017-10-19 14:32:26 -07:00
def get_weight_adjustment_anims(self, edges, cost):
start_cost = cost.number
target_cost = start_cost + self.delta_cost
w_terms = self.cost_expression[1]
return [
self.get_edge_change_anim(edges),
LaggedStart(
Indicate, w_terms,
rate_func = there_and_back,
run_time = 1.5,
),
ChangingDecimal(
cost,
lambda a : interpolate(start_cost, target_cost, a),
run_time = 1.5
)
]
2017-10-19 14:32:26 -07:00
2017-10-20 17:10:47 -07:00
class GetLostInNotation(PiCreatureScene):
def construct(self):
morty = self.pi_creature
equations = VGroup(
TexMobject(
"\\delta", "^L", "=", "\\nabla_a", "C",
"\\odot \\sigma'(", "z", "^L)"
),
TexMobject(
"\\delta", "^l = ((", "w", "^{l+1})^T",
"\\delta", "^{l+1}) \\odot \\sigma'(", "z", "^l)"
),
TexMobject(
"{\\partial", "C", "\\over \\partial", "b",
"_j^l} =", "\\delta", "_j^l"
),
TexMobject(
"{\\partial", "C", " \\over \\partial",
"w", "_{jk}^l} = ", "a", "_k^{l-1}", "\\delta", "_j^l"
),
)
for equation in equations:
equation.highlight_by_tex_to_color_map({
"\\delta" : YELLOW,
"C" : RED,
"b" : MAROON_B,
"w" : BLUE,
"z" : TEAL,
})
equation.highlight_by_tex("nabla", WHITE)
equations.arrange_submobjects(
DOWN, buff = MED_LARGE_BUFF, aligned_edge = LEFT
)
2017-10-19 14:32:26 -07:00
2017-10-20 17:10:47 -07:00
circle = Circle(radius = 3*SPACE_WIDTH)
circle.set_fill(WHITE, 0)
circle.set_stroke(WHITE, 0)
2017-10-19 14:32:26 -07:00
2017-10-20 17:10:47 -07:00
self.play(
Write(equations),
morty.change, "confused", equations
)
self.dither()
self.play(morty.change, "pleading")
self.dither(2)
##
movers = VGroup(*equations.family_members_with_points())
random.shuffle(movers.submobjects)
for mover in list(movers):
if mover.is_subpath:
movers.remove(mover)
continue
mover.set_stroke(WHITE, width = 0)
mover.target = Circle()
mover.target.scale(0.5)
mover.target.set_fill(mover.get_color(), opacity = 0)
mover.target.set_stroke(BLACK, width = 1)
mover.target.move_to(mover)
self.play(
LaggedStart(
MoveToTarget, movers,
run_time = 2,
),
morty.change, "pondering",
)
self.dither()
2017-10-19 14:32:26 -07:00
2017-10-20 17:10:47 -07:00
class TODOInsertPreviewLearning(TODOStub):
CONFIG = {
"message" : "Insert PreviewLearning"
}
2017-10-19 14:32:26 -07:00
2017-10-23 15:48:05 -07:00
class ShowAveragingCost(PreviewLearning):
CONFIG = {
"network_scale_val" : 0.8,
"stroke_width_exp" : 1,
"start_examples_time" : 5,
"examples_per_adjustment_time" : 2,
"n_adjustments" : 5,
"time_per_example" : 1./15,
"image_height" : 1.2,
}
def construct(self):
self.setup_network()
self.setup_diff_words()
self.show_many_examples()
def setup_network(self):
self.network_mob.scale(self.network_scale_val)
self.network_mob.to_edge(DOWN)
self.network_mob.shift(LEFT)
self.color_network_edges()
def setup_diff_words(self):
last_layer_copy = self.network_mob.layers[-1].deepcopy()
last_layer_copy.add(self.network_mob.output_labels.copy())
last_layer_copy.shift(1.5*RIGHT)
double_arrow = DoubleArrow(
self.network_mob.output_labels,
last_layer_copy,
color = RED
)
brace = Brace(
VGroup(self.network_mob.layers[-1], last_layer_copy),
UP
)
cost_words = brace.get_text("Cost of \\\\ one example")
cost_words.highlight(RED)
self.add(last_layer_copy, double_arrow, brace, cost_words)
self.set_variables_as_attrs(
last_layer_copy, double_arrow, brace, cost_words
)
self.last_layer_copy = last_layer_copy
def show_many_examples(self):
training_data, validation_data, test_data = load_data_wrapper()
average_words = TextMobject("Average over all training examples")
average_words.next_to(LEFT, RIGHT)
average_words.to_edge(UP)
self.add(average_words)
n_start_examples = int(self.start_examples_time/self.time_per_example)
n_examples_per_adjustment = int(self.examples_per_adjustment_time/self.time_per_example)
for train_in, train_out in training_data[:n_start_examples]:
2017-10-23 15:48:05 -07:00
self.show_one_example(train_in, train_out)
self.dither(self.time_per_example)
#Wiggle all edges
edges = VGroup(*it.chain(*self.network_mob.edge_groups))
reversed_edges = VGroup(*reversed(edges))
self.play(LaggedStart(
ApplyFunction, edges,
lambda edge : (
lambda m : m.rotate_in_place(np.pi/12).highlight(YELLOW),
edge,
),
rate_func = lambda t : wiggle(t, 4),
run_time = 3,
))
#Show all, then adjust
words = TextMobject(
"Each step \\\\ uses every \\\\ example\\\\",
"$\\dots$theoretically",
alignment = ""
)
words.highlight(YELLOW)
words.scale(0.8)
words.to_corner(UP+LEFT)
for x in xrange(self.n_adjustments):
if x < 2:
self.play(FadeIn(words[x]))
for train_in, train_out in training_data[:n_examples_per_adjustment]:
2017-10-23 15:48:05 -07:00
self.show_one_example(train_in, train_out)
self.dither(self.time_per_example)
self.play(LaggedStart(
ApplyMethod, reversed_edges,
lambda m : (m.rotate_in_place, np.pi),
run_time = 1,
lag_ratio = 0.2,
))
if x >= 2:
2017-10-23 15:48:05 -07:00
self.dither()
2017-10-19 14:32:26 -07:00
2017-10-23 15:48:05 -07:00
####
def show_one_example(self, train_in, train_out):
if hasattr(self, "curr_image"):
self.remove(self.curr_image)
image = MNistMobject(train_in)
image.scale_to_fit_height(self.image_height)
image.next_to(
self.network_mob.layers[0].neurons, UP,
aligned_edge = LEFT
)
self.add(image)
self.network_mob.activate_layers(train_in)
2017-10-19 14:32:26 -07:00
2017-10-23 15:48:05 -07:00
index = np.argmax(train_out)
self.last_layer_copy.neurons.set_fill(opacity = 0)
self.last_layer_copy.neurons[index].set_fill(WHITE, opacity = 1)
self.add(self.last_layer_copy)
2017-10-19 14:32:26 -07:00
self.curr_image = image
2017-10-19 14:32:26 -07:00
2017-10-23 15:48:05 -07:00
class WalkThroughTwoExample(ShowAveragingCost):
CONFIG = {
"random_seed" : 0,
}
def setup(self):
np.random.seed(self.random_seed)
random.seed(self.random_seed)
self.setup_bases()
2017-10-23 15:48:05 -07:00
def construct(self):
self.setup_network()
self.setup_diff_words()
self.show_single_example()
self.single_example_influencing_weights()
2017-10-23 15:48:05 -07:00
self.expand_last_layer()
self.show_activation_formula()
self.three_ways_to_increase()
self.note_connections_to_brightest_neurons()
self.fire_together_wire_together()
self.show_desired_increase_to_previous_neurons()
self.only_keeping_track_of_changes()
self.show_other_output_neurons()
self.show_recursion()
2017-10-23 15:48:05 -07:00
def show_single_example(self):
two_vect = get_organized_images()[2][0]
two_out = np.zeros(10)
2017-10-23 15:48:05 -07:00
two_out[2] = 1.0
self.show_one_example(two_vect, two_out)
for layer in self.network_mob.layers:
layer.neurons.set_fill(opacity = 0)
self.activate_network(two_vect)
self.dither()
def single_example_influencing_weights(self):
two = self.curr_image
two.save_state()
edge_groups = self.network_mob.edge_groups
def adjust_edge_group_anim(edge_group):
return LaggedStart(
ApplyFunction, edge_group,
lambda edge : (
lambda m : m.rotate_in_place(np.pi/12).highlight(YELLOW),
edge
),
rate_func = wiggle,
run_time = 1,
)
self.play(
two.next_to, edge_groups[0].get_corner(DOWN+RIGHT), DOWN,
adjust_edge_group_anim(edge_groups[0])
)
self.play(
ApplyMethod(
two.next_to, edge_groups[1].get_corner(UP+RIGHT), UP,
path_arc = np.pi/6,
),
adjust_edge_group_anim(VGroup(*reversed(edge_groups[1])))
)
self.play(
ApplyMethod(
two.next_to, edge_groups[2].get_corner(DOWN+RIGHT), DOWN,
path_arc = -np.pi/6,
),
adjust_edge_group_anim(edge_groups[2])
)
self.play(two.restore)
self.dither()
2017-10-23 15:48:05 -07:00
def expand_last_layer(self):
neurons = self.network_mob.layers[-1].neurons
alt_neurons = self.last_layer_copy.neurons
output_labels = self.network_mob.output_labels
alt_output_labels = self.last_layer_copy[-1]
edges = self.network_mob.edge_groups[-1]
movers = VGroup(
neurons, alt_neurons,
output_labels, alt_output_labels,
*edges
)
to_fade = VGroup(self.brace, self.cost_words, self.double_arrow)
for mover in movers:
mover.save_state()
mover.generate_target()
mover.target.scale_in_place(2)
neurons[2].save_state()
neurons.target.to_edge(DOWN, MED_LARGE_BUFF)
output_labels.target.next_to(neurons.target, RIGHT, MED_SMALL_BUFF)
alt_neurons.target.next_to(neurons.target, RIGHT, buff = 2)
alt_output_labels.target.next_to(alt_neurons.target, RIGHT, MED_SMALL_BUFF)
n_pairs = it.product(
self.network_mob.layers[-2].neurons,
neurons.target
)
for edge, (n1, n2) in zip(edges, n_pairs):
r1 = n1.get_width()/2.0
r2 = n2.get_width()/2.0
c1 = n1.get_center()
c2 = n2.get_center()
vect = c2 - c1
norm = np.linalg.norm(vect)
unit_vect = vect / norm
edge.target.put_start_and_end_on(
c1 + unit_vect*r1,
c2 - unit_vect*r2
)
self.play(
FadeOut(to_fade),
*map(MoveToTarget, movers)
)
self.show_decimals(neurons)
self.cannot_directly_affect_activations()
self.show_desired_activation_nudges(neurons, output_labels, alt_output_labels)
self.focus_on_one_neuron(movers)
def show_decimals(self, neurons):
decimals = VGroup()
for neuron in neurons:
activation = neuron.get_fill_opacity()
decimal = DecimalNumber(activation, num_decimal_points = 1)
decimal.scale_to_fit_width(0.7*neuron.get_width())
decimal.move_to(neuron)
if activation > 0.8:
decimal.highlight(BLACK)
decimals.add(decimal)
self.play(Write(decimals, run_time = 2))
self.dither()
self.decimals = decimals
2017-10-23 15:48:05 -07:00
def cannot_directly_affect_activations(self):
words = TextMobject("You can only adjust weights and biases")
words.next_to(self.curr_image, RIGHT, MED_SMALL_BUFF, UP)
edges = VGroup(*self.network_mob.edge_groups.family_members_with_points())
random.shuffle(edges.submobjects)
for edge in edges:
edge.generate_target()
edge.target.set_stroke(
random.choice([BLUE, RED]),
2*random.random()**2,
)
2017-10-23 15:48:05 -07:00
self.play(
LaggedStart(
Transform, edges,
lambda e : (e, e.target),
run_time = 4,
rate_func = there_and_back,
),
Write(words, run_time = 2)
)
self.play(FadeOut(words))
def show_desired_activation_nudges(self, neurons, output_labels, alt_output_labels):
arrows = VGroup()
rects = VGroup()
for i, neuron, label in zip(it.count(), neurons, alt_output_labels):
activation = neuron.get_fill_opacity()
target_val = 1 if i == 2 else 0
diff = abs(activation - target_val)
arrow = Arrow(
ORIGIN, diff*neuron.get_height()*DOWN,
color = RED,
)
arrow.move_to(neuron.get_right())
arrow.shift(0.175*RIGHT)
if i == 2:
arrow.highlight(BLUE)
arrow.rotate_in_place(np.pi)
arrows.add(arrow)
rect = SurroundingRectangle(VGroup(neuron, label))
if i == 2:
rect.highlight(BLUE)
else:
rect.highlight(RED)
rects.add(rect)
self.play(
output_labels.shift, SMALL_BUFF*RIGHT,
LaggedStart(GrowArrow, arrows, run_time = 1)
)
self.dither()
#Show changing activations
anims = []
def get_decimal_update(start, end):
return lambda a : interpolate(start, end, a)
for i in range(10):
target = 1.0 if i == 2 else 0.01
anims += [neurons[i].set_fill, WHITE, target]
decimal = self.decimals[i]
anims.append(ChangingDecimal(
decimal,
get_decimal_update(decimal.number, target),
num_decimal_points = 1
))
anims.append(UpdateFromFunc(
self.decimals[i],
lambda m : m.set_fill(WHITE if m.number < 0.8 else BLACK)
))
self.play(
*anims,
run_time = 3,
rate_func = there_and_back
)
two_rect = rects[2]
eight_rect = rects[8].copy()
non_two_rects = VGroup(*[r for r in rects if r is not two_rect])
self.play(ShowCreation(two_rect))
self.dither()
self.remove(two_rect)
self.play(ReplacementTransform(two_rect.copy(), non_two_rects))
self.dither()
self.play(LaggedStart(FadeOut, non_two_rects, run_time = 1))
self.play(LaggedStart(
ApplyFunction, arrows,
lambda arrow : (
lambda m : m.scale_in_place(0.5).highlight(YELLOW),
arrow,
),
rate_func = wiggle
))
self.play(ShowCreation(two_rect))
self.dither()
self.play(ReplacementTransform(two_rect, eight_rect))
self.dither()
self.play(FadeOut(eight_rect))
self.arrows = arrows
def focus_on_one_neuron(self, expanded_mobjects):
network_mob = self.network_mob
neurons = network_mob.layers[-1].neurons
labels = network_mob.output_labels
two_neuron = neurons[2]
neurons.remove(two_neuron)
two_label = labels[2]
labels.remove(two_label)
expanded_mobjects.remove(*two_neuron.edges_in)
two_decimal = self.decimals[2]
self.decimals.remove(two_decimal)
two_arrow = self.arrows[2]
self.arrows.remove(two_arrow)
to_fade = VGroup(*it.chain(
network_mob.layers[:2],
network_mob.edge_groups[:2],
expanded_mobjects,
self.decimals,
self.arrows
))
2017-10-23 15:48:05 -07:00
self.play(FadeOut(to_fade))
self.dither()
for mob in expanded_mobjects:
if mob in [neurons, labels]:
mob.scale(0.5)
mob.move_to(mob.saved_state)
else:
mob.restore()
for d, a, n in zip(self.decimals, self.arrows, neurons):
d.scale(0.5)
d.move_to(n)
a.scale(0.5)
a.move_to(n.get_right())
a.shift(SMALL_BUFF*RIGHT)
labels.shift(SMALL_BUFF*RIGHT)
self.set_variables_as_attrs(
two_neuron, two_label, two_arrow, two_decimal,
)
2017-10-23 15:48:05 -07:00
def show_activation_formula(self):
rhs = TexMobject(
"=", "\\sigma(",
"w_0", "a_0", "+",
"w_1", "a_1", "+",
"\\cdots", "+",
"w_{n-1}", "a_{n-1}", "+",
"b", ")"
)
equals = rhs[0]
sigma = VGroup(rhs[1], rhs[-1])
w_terms = rhs.get_parts_by_tex("w_")
a_terms = rhs.get_parts_by_tex("a_")
plus_terms = rhs.get_parts_by_tex("+")
b = rhs.get_part_by_tex("b", substring = False)
dots = rhs.get_part_by_tex("dots")
w_terms.highlight(BLUE)
b.highlight(MAROON_B)
sigma.highlight(YELLOW)
rhs.to_corner(UP+RIGHT)
sigma.save_state()
sigma.shift(DOWN)
sigma.set_fill(opacity = 0)
prev_neurons = self.network_mob.layers[-2].neurons
edges = self.two_neuron.edges_in
neuron_copy = VGroup(
self.two_neuron.copy(),
self.two_decimal.copy(),
)
self.play(
neuron_copy.next_to, equals.get_left(), LEFT,
self.curr_image.to_corner, UP+LEFT,
Write(equals)
)
self.play(
ReplacementTransform(edges.copy(), w_terms),
Write(VGroup(*plus_terms[:-1])),
Write(dots),
run_time = 1.5
)
self.dither()
self.play(ReplacementTransform(
prev_neurons.copy(), a_terms,
path_arc = np.pi/2
))
self.dither()
self.play(
Write(plus_terms[-1]),
Write(b)
)
self.dither()
self.play(sigma.restore)
self.dither(2)
self.set_variables_as_attrs(
rhs, w_terms, a_terms, b,
lhs = neuron_copy
)
2017-10-23 15:48:05 -07:00
def three_ways_to_increase(self):
w_terms = self.w_terms
a_terms = self.a_terms
b = self.b
increase_words = VGroup(
TextMobject("Increase", "$b$"),
TextMobject("Increase", "$w_i$"),
TextMobject("Change", "$a_i$"),
)
for words in increase_words:
words.highlight_by_tex_to_color_map({
"b" : b.get_color(),
"w_" : w_terms.get_color(),
"a_" : a_terms.get_color(),
})
increase_words.arrange_submobjects(
DOWN, aligned_edge = LEFT,
buff = LARGE_BUFF
)
increase_words.to_edge(LEFT)
mobs = [b, w_terms[0], a_terms[0]]
for words, mob in zip(increase_words, mobs):
self.play(
Write(words[0], run_time = 1),
ReplacementTransform(mob.copy(), words[1])
)
self.dither()
self.increase_words = increase_words
2017-10-23 15:48:05 -07:00
def note_connections_to_brightest_neurons(self):
w_terms = self.w_terms
a_terms = self.a_terms
increase_words = self.increase_words
prev_neurons = self.network_mob.layers[-2].neurons
edges = self.two_neuron.edges_in
prev_activations = np.array([n.get_fill_opacity() for n in prev_neurons])
sorted_indices = np.argsort(prev_activations.flatten())
bright_neurons = VGroup()
edges_to_bright_neurons = VGroup()
for i in sorted_indices[-4:]:
bright_neurons.add(prev_neurons[i].copy())
bright_neurons.set_stroke(YELLOW, 3)
edges_to_bright_neurons.add(edges[i])
bright_edges = edges_to_bright_neurons.copy()
bright_edges.set_stroke(YELLOW, 4)
added_words = TextMobject("in proportion to $a_i$")
added_words.next_to(
increase_words[1], DOWN,
1.5*SMALL_BUFF, LEFT
)
added_words.highlight(YELLOW)
terms_rect = SurroundingRectangle(
VGroup(w_terms[0], a_terms[0]),
color = WHITE
)
self.play(LaggedStart(
ApplyFunction, edges,
lambda edge : (
lambda m : m.rotate_in_place(np.pi/12).set_stroke(YELLOW),
edge
),
rate_func = wiggle
))
self.dither()
self.play(
ShowCreation(bright_edges),
ShowCreation(bright_neurons)
)
self.dither()
self.play(
ReplacementTransform(bright_edges[0].copy(), w_terms[0]),
ReplacementTransform(bright_neurons[0].copy(), a_terms[0]),
ShowCreation(terms_rect)
)
self.dither()
for x in range(2):
self.play(LaggedStart(ShowCreationThenDestruction, bright_edges))
self.play(LaggedStart(ShowCreation, bright_edges))
self.play(FadeOut(terms_rect))
self.dither()
self.play(
self.curr_image.shift, MED_LARGE_BUFF*RIGHT,
rate_func = wiggle
)
self.dither()
self.play(Write(added_words))
self.dither()
2017-10-19 14:32:26 -07:00
self.set_variables_as_attrs(
bright_neurons, bright_edges,
in_proportion_to_a = added_words
)
def fire_together_wire_together(self):
bright_neurons = self.bright_neurons
bright_edges = self.bright_edges
two_neuron = self.two_neuron
two_decimal = self.two_decimal
two_activation = two_decimal.number
def get_edge_animation():
return LaggedStart(
ShowCreationThenDestruction, bright_edges,
lag_ratio = 0.7
)
neuron_arrows = VGroup(*[
Vector(MED_LARGE_BUFF*RIGHT).next_to(n, LEFT)
for n in bright_neurons
])
two_neuron_arrow = Vector(MED_LARGE_BUFF*DOWN)
two_neuron_arrow.next_to(two_neuron, UP)
VGroup(neuron_arrows, two_neuron_arrow).highlight(YELLOW)
neuron_rects = VGroup(*map(
SurroundingRectangle, bright_neurons
))
two_neuron_rect = SurroundingRectangle(two_neuron)
seeing_words = TextMobject("Seeing a 2")
seeing_words.scale(0.8)
thinking_words = TextMobject("Thinking about a 2")
thinking_words.scale(0.8)
seeing_words.next_to(neuron_rects, UP)
thinking_words.next_to(two_neuron_arrow, RIGHT)
morty = Mortimer()
morty.scale(0.8)
morty.to_corner(DOWN+RIGHT)
words = TextMobject("""
``Neurons that \\\\
fire together \\\\
wire together''
""")
words.to_edge(RIGHT)
self.play(FadeIn(morty))
self.play(
Write(words),
morty.change, "speaking", words
)
self.play(Blink(morty))
self.play(
get_edge_animation(),
morty.change, "pondering", bright_edges
)
self.play(get_edge_animation())
self.play(
LaggedStart(GrowArrow, neuron_arrows),
get_edge_animation(),
)
self.play(
GrowArrow(two_neuron_arrow),
morty.change, "raise_right_hand", two_neuron
)
self.play(
ApplyMethod(two_neuron.set_fill, WHITE, 1),
ChangingDecimal(
two_decimal,
lambda a : interpolate(two_activation, 1, a),
num_decimal_points = 1,
),
UpdateFromFunc(
two_decimal,
lambda m : m.highlight(WHITE if m.number < 0.8 else BLACK),
),
LaggedStart(ShowCreation, bright_edges),
run_time = 2,
)
self.dither()
self.play(
LaggedStart(ShowCreation, neuron_rects),
Write(seeing_words, run_time = 2),
morty.change, "thinking", seeing_words
)
self.dither()
self.play(
ShowCreation(two_neuron_rect),
Write(thinking_words, run_time = 2),
morty.look_at, thinking_words
)
self.dither()
self.play(LaggedStart(FadeOut, VGroup(
neuron_rects, two_neuron_rect,
seeing_words, thinking_words,
words, morty,
neuron_arrows, two_neuron_arrow,
bright_edges, bright_neurons,
)))
self.play(
ApplyMethod(two_neuron.set_fill, WHITE, two_activation),
ChangingDecimal(
two_decimal,
lambda a : interpolate(1, two_activation, a),
num_decimal_points = 1,
),
UpdateFromFunc(
two_decimal,
lambda m : m.highlight(WHITE if m.number < 0.8 else BLACK),
),
)
def show_desired_increase_to_previous_neurons(self):
increase_words = self.increase_words
two_neuron = self.two_neuron
edges = two_neuron.edges_in
prev_neurons = self.network_mob.layers[-2].neurons
positive_arrows = VGroup()
negative_arrows = VGroup()
all_arrows = VGroup()
positive_edges = VGroup()
negative_edges = VGroup()
positive_neurons = VGroup()
negative_neurons = VGroup()
for neuron, edge in zip(prev_neurons, edges):
value = self.get_edge_value(edge)
arrow = self.get_neuron_nudge_arrow(edge)
arrow.move_to(neuron.get_left())
arrow.shift(SMALL_BUFF*LEFT)
all_arrows.add(arrow)
if value > 0:
positive_arrows.add(arrow)
positive_edges.add(edge)
positive_neurons.add(neuron)
else:
negative_arrows.add(arrow)
negative_edges.add(edge)
negative_neurons.add(neuron)
added_words = TextMobject("in proportion to $w_i$")
added_words.highlight(self.w_terms.get_color())
added_words.next_to(
increase_words[-1], DOWN,
SMALL_BUFF, aligned_edge = LEFT
)
self.play(LaggedStart(
ApplyFunction, prev_neurons,
lambda neuron : (
lambda m : m.scale_in_place(0.5).highlight(YELLOW),
neuron
),
rate_func = wiggle
))
self.dither()
for positive in [True, False]:
if positive:
arrows = positive_arrows
edges = positive_edges
neurons = positive_neurons
color = self.positive_edge_color
else:
arrows = negative_arrows
edges = negative_edges
neurons = negative_neurons
color = self.negative_edge_color
self.play(
LaggedStart(
Transform, edges,
lambda mob : (
mob,
Dot(
mob.get_center(),
stroke_color = edges[0].get_color(),
stroke_width = 1,
radius = 0.25*SMALL_BUFF,
fill_opacity = 0
)
),
rate_func = there_and_back
),
neurons.set_stroke, color, 3,
)
self.play(
LaggedStart(GrowArrow, arrows),
ApplyMethod(
neurons.set_fill, color, 1,
rate_func = there_and_back,
)
)
self.dither()
self.play(Write(added_words, run_time = 1))
self.play(prev_neurons.set_stroke, WHITE, 2)
self.set_variables_as_attrs(
in_proportion_to_w = added_words,
prev_neuron_arrows = all_arrows,
)
def only_keeping_track_of_changes(self):
arrows = self.prev_neuron_arrows
prev_neurons = self.network_mob.layers[-2].neurons
rect = SurroundingRectangle(VGroup(arrows, prev_neurons))
words = TextMobject("No direct influence")
words.next_to(rect, UP)
self.play(ShowCreation(rect))
self.play(Write(words))
self.dither()
self.play(FadeOut(VGroup(words, rect)))
def show_other_output_neurons(self):
two_neuron = self.two_neuron
two_decimal = self.two_decimal
two_arrow = self.two_arrow
two_label = self.two_label
two_edges = two_neuron.edges_in
prev_neurons = self.network_mob.layers[-2].neurons
neurons = self.network_mob.layers[-1].neurons
prev_neuron_arrows = self.prev_neuron_arrows
arrows_to_fade = VGroup(prev_neuron_arrows)
output_labels = self.network_mob.output_labels
quads = zip(neurons, self.decimals, self.arrows, output_labels)
self.play(
two_neuron.restore,
two_decimal.scale, 0.5,
two_decimal.move_to, two_neuron.saved_state,
two_arrow.scale, 0.5,
two_arrow.next_to, two_neuron.saved_state, RIGHT, 0.5*SMALL_BUFF,
two_label.scale, 0.5,
two_label.next_to, two_neuron.saved_state, RIGHT, 1.5*SMALL_BUFF,
FadeOut(VGroup(self.lhs, self.rhs)),
*[e.restore for e in two_edges]
)
for neuron, decimal, arrow, label in quads[:2]:
plusses = VGroup()
new_arrows = VGroup()
for edge, prev_arrow in zip(neuron.edges_in, prev_neuron_arrows):
plus = TexMobject("+").scale(0.5)
plus.move_to(prev_arrow)
plus.shift(2*SMALL_BUFF*LEFT)
new_arrow = self.get_neuron_nudge_arrow(edge)
new_arrow.move_to(plus)
new_arrow.shift(2*SMALL_BUFF*LEFT)
plusses.add(plus)
new_arrows.add(new_arrow)
self.play(
FadeIn(VGroup(neuron, decimal, arrow, label)),
LaggedStart(ShowCreation, neuron.edges_in),
)
self.play(
ReplacementTransform(neuron.edges_in.copy(), new_arrows),
Write(plusses, run_time = 2)
)
arrows_to_fade.add(new_arrows, plusses)
prev_neuron_arrows = new_arrows
all_dots_plus = VGroup()
for arrow in prev_neuron_arrows:
dots_plus = TexMobject("\\cdots +")
dots_plus.scale(0.5)
dots_plus.move_to(arrow.get_center(), RIGHT)
dots_plus.shift(2*SMALL_BUFF*LEFT)
all_dots_plus.add(dots_plus)
arrows_to_fade.add(all_dots_plus)
self.play(
LaggedStart(
FadeIn, VGroup(*it.starmap(VGroup, quads[-7:])),
),
LaggedStart(
FadeIn, VGroup(*[n.edges_in for n in neurons[-7:]])
),
Write(all_dots_plus),
run_time = 3,
)
self.dither(2)
def squish(p):
return p[1]*UP
self.play(
arrows_to_fade.apply_function, squish,
arrows_to_fade.move_to, prev_neurons,
)
def show_recursion(self):
network_start = VGroup(*it.chain(
self.network_mob.edge_groups[1],
self.network_mob.layers[1],
self.network_mob.edge_groups[0],
self.network_mob.layers[0],
))
words_to_fade = VGroup(
self.increase_words,
self.in_proportion_to_w,
self.in_proportion_to_a,
)
2017-10-19 14:32:26 -07:00
self.play(
FadeOut(words_to_fade),
LaggedStart(FadeIn, network_start, run_time = 3)
)
self.dither()
for i in 1, 0:
edges = self.network_mob.edge_groups[i]
self.play(LaggedStart(
ApplyFunction, edges,
lambda edge : (
lambda m : m.rotate_in_place(np.pi/12).highlight(YELLOW),
edge
),
rate_func = wiggle
))
self.dither()
####
2017-10-19 14:32:26 -07:00
def get_neuron_nudge_arrow(self, edge):
value = self.get_edge_value(edge)
height = np.sign(value)*0.1 + 0.1*value
arrow = Vector(height*UP, color = edge.get_color())
return arrow
2017-10-19 14:32:26 -07:00
def get_edge_value(self, edge):
value = edge.get_stroke_width()
if Color(edge.get_stroke_color()) == Color(self.negative_edge_color):
value *= -1
return value
2017-10-19 14:32:26 -07:00
class NotANeuroScientist(TeacherStudentsScene):
def construct(self):
quote = TextMobject("``Neurons that fire together wire together''")
quote.to_edge(UP)
self.add(quote)
asterisks = TextMobject("***")
asterisks.next_to(quote.get_corner(UP+RIGHT), RIGHT, SMALL_BUFF)
asterisks.highlight(BLUE)
brain = SVGMobject(file_name = "brain")
brain.scale_to_fit_height(1.5)
self.add(brain)
double_arrow = DoubleArrow(LEFT, RIGHT)
double_arrow.next_to(brain, RIGHT)
q_marks = TextMobject("???")
q_marks.next_to(double_arrow, UP)
network = NetworkMobject(Network(sizes = [6, 4, 4, 5]))
network.scale_to_fit_height(1.5)
network.next_to(double_arrow, RIGHT)
group = VGroup(brain, double_arrow, q_marks, network)
group.next_to(self.students, UP, buff = 1.5)
self.add(group)
self.add(ContinualEdgeUpdate(network))
rect = SurroundingRectangle(group)
no_claim_words = TextMobject("No claims here...")
no_claim_words.next_to(rect, UP)
no_claim_words.highlight(YELLOW)
brain_outline = brain.copy()
brain_outline.set_fill(opacity = 0)
brain_outline.set_stroke(BLUE, 3)
brain_anim = ShowCreationThenDestruction(brain_outline)
words = TextMobject("Definitely not \\\\ a neuroscientist")
words.next_to(self.teacher, UP, buff = 1.5)
words.shift_onto_screen()
arrow = Arrow(words.get_bottom(), self.teacher.get_top())
2017-10-19 14:32:26 -07:00
self.play(
Write(words),
GrowArrow(arrow),
self.teacher.change, "guilty", words,
run_time = 1,
)
self.change_student_modes(*3*["sassy"])
self.play(
ShowCreation(rect),
Write(no_claim_words, run_time = 1),
brain_anim
)
self.dither()
self.play(brain_anim)
self.play(Write(asterisks, run_time = 1))
for x in range(2):
self.play(brain_anim)
self.dither()
2017-10-19 14:32:26 -07:00