mirror of
https://github.com/3b1b/manim.git
synced 2025-04-13 09:47:07 +00:00
308 lines
10 KiB
Python
308 lines
10 KiB
Python
![]() |
import numpy as np
|
||
|
import os
|
||
|
import itertools as it
|
||
|
from PIL import Image
|
||
|
|
||
|
from manimlib.constants import *
|
||
|
|
||
|
from manimlib.animation.composition import AnimationGroup
|
||
|
from manimlib.animation.indication import ShowPassingFlash
|
||
|
from manimlib.mobject.geometry import Vector
|
||
|
from manimlib.mobject.types.vectorized_mobject import VGroup
|
||
|
from manimlib.mobject.types.vectorized_mobject import VMobject
|
||
|
from manimlib.utils.bezier import inverse_interpolate
|
||
|
from manimlib.utils.bezier import interpolate
|
||
|
from manimlib.utils.color import color_to_rgb
|
||
|
from manimlib.utils.color import rgb_to_color
|
||
|
from manimlib.utils.rate_functions import linear
|
||
|
from manimlib.utils.simple_functions import sigmoid
|
||
|
from manimlib.utils.space_ops import get_norm
|
||
|
# from manimlib.utils.space_ops import normalize
|
||
|
|
||
|
|
||
|
DEFAULT_SCALAR_FIELD_COLORS = [BLUE_E, GREEN, YELLOW, RED]
|
||
|
|
||
|
|
||
|
def get_colored_background_image(scalar_field_func,
|
||
|
number_to_rgb_func,
|
||
|
pixel_height=DEFAULT_PIXEL_HEIGHT,
|
||
|
pixel_width=DEFAULT_PIXEL_WIDTH):
|
||
|
ph = pixel_height
|
||
|
pw = pixel_width
|
||
|
fw = FRAME_WIDTH
|
||
|
fh = FRAME_HEIGHT
|
||
|
points_array = np.zeros((ph, pw, 3))
|
||
|
x_array = np.linspace(-fw / 2, fw / 2, pw)
|
||
|
x_array = x_array.reshape((1, len(x_array)))
|
||
|
x_array = x_array.repeat(ph, axis=0)
|
||
|
|
||
|
y_array = np.linspace(fh / 2, -fh / 2, ph)
|
||
|
y_array = y_array.reshape((len(y_array), 1))
|
||
|
y_array.repeat(pw, axis=1)
|
||
|
points_array[:, :, 0] = x_array
|
||
|
points_array[:, :, 1] = y_array
|
||
|
scalars = np.apply_along_axis(scalar_field_func, 2, points_array)
|
||
|
rgb_array = number_to_rgb_func(scalars.flatten()).reshape((ph, pw, 3))
|
||
|
return Image.fromarray((rgb_array * 255).astype('uint8'))
|
||
|
|
||
|
|
||
|
def get_rgb_gradient_function(min_value=0, max_value=1,
|
||
|
colors=[BLUE, RED],
|
||
|
flip_alphas=True, # Why?
|
||
|
):
|
||
|
rgbs = np.array(list(map(color_to_rgb, colors)))
|
||
|
|
||
|
def func(values):
|
||
|
alphas = inverse_interpolate(min_value, max_value, values)
|
||
|
alphas = np.clip(alphas, 0, 1)
|
||
|
# if flip_alphas:
|
||
|
# alphas = 1 - alphas
|
||
|
scaled_alphas = alphas * (len(rgbs) - 1)
|
||
|
indices = scaled_alphas.astype(int)
|
||
|
next_indices = np.clip(indices + 1, 0, len(rgbs) - 1)
|
||
|
inter_alphas = scaled_alphas % 1
|
||
|
inter_alphas = inter_alphas.repeat(3).reshape((len(indices), 3))
|
||
|
result = interpolate(rgbs[indices], rgbs[next_indices], inter_alphas)
|
||
|
return result
|
||
|
|
||
|
return func
|
||
|
|
||
|
|
||
|
def get_color_field_image_file(scalar_func,
|
||
|
min_value=0, max_value=2,
|
||
|
colors=DEFAULT_SCALAR_FIELD_COLORS
|
||
|
):
|
||
|
# try_hash
|
||
|
np.random.seed(0)
|
||
|
sample_inputs = 5 * np.random.random(size=(10, 3)) - 10
|
||
|
sample_outputs = np.apply_along_axis(scalar_func, 1, sample_inputs)
|
||
|
func_hash = hash(
|
||
|
str(min_value) + str(max_value) + str(colors) + str(sample_outputs)
|
||
|
)
|
||
|
file_name = "%d.png" % func_hash
|
||
|
full_path = os.path.join(RASTER_IMAGE_DIR, file_name)
|
||
|
if not os.path.exists(full_path):
|
||
|
print("Rendering color field image " + str(func_hash))
|
||
|
rgb_gradient_func = get_rgb_gradient_function(
|
||
|
min_value=min_value,
|
||
|
max_value=max_value,
|
||
|
colors=colors
|
||
|
)
|
||
|
image = get_colored_background_image(scalar_func, rgb_gradient_func)
|
||
|
image.save(full_path)
|
||
|
return full_path
|
||
|
|
||
|
|
||
|
def move_along_vector_field(mobject, func):
|
||
|
mobject.add_updater(
|
||
|
lambda m, dt: m.shift(
|
||
|
func(m.get_center()) * dt
|
||
|
)
|
||
|
)
|
||
|
return mobject
|
||
|
|
||
|
|
||
|
def move_submobjects_along_vector_field(mobject, func):
|
||
|
def apply_nudge(mob, dt):
|
||
|
for submob in mob:
|
||
|
x, y = submob.get_center()[:2]
|
||
|
if abs(x) < FRAME_WIDTH and abs(y) < FRAME_HEIGHT:
|
||
|
submob.shift(func(submob.get_center()) * dt)
|
||
|
|
||
|
mobject.add_updater(apply_nudge)
|
||
|
return mobject
|
||
|
|
||
|
|
||
|
def move_points_along_vector_field(mobject, func):
|
||
|
def apply_nudge(self, dt):
|
||
|
self.mobject.apply_function(
|
||
|
lambda p: p + func(p) * dt
|
||
|
)
|
||
|
mobject.add_updater(apply_nudge)
|
||
|
return mobject
|
||
|
|
||
|
|
||
|
# Mobjects
|
||
|
|
||
|
class StreamLines(VGroup):
|
||
|
CONFIG = {
|
||
|
# "start_points_generator": get_flow_start_points,
|
||
|
"start_points_generator_config": {},
|
||
|
"dt": 0.05,
|
||
|
"virtual_time": 3,
|
||
|
"n_anchors_per_line": 100,
|
||
|
"stroke_width": 1,
|
||
|
"stroke_color": WHITE,
|
||
|
"color_lines_by_magnitude": False,
|
||
|
"min_magnitude": 0.5,
|
||
|
"max_magnitude": 1.5,
|
||
|
"colors": DEFAULT_SCALAR_FIELD_COLORS,
|
||
|
"cutoff_norm": 15,
|
||
|
}
|
||
|
|
||
|
def __init__(self, func, **kwargs):
|
||
|
VGroup.__init__(self, **kwargs)
|
||
|
self.func = func
|
||
|
dt = self.dt
|
||
|
|
||
|
start_points = self.get_start_points(
|
||
|
**self.start_points_generator_config
|
||
|
)
|
||
|
for point in start_points:
|
||
|
points = [point]
|
||
|
for t in np.arange(0, self.virtual_time, dt):
|
||
|
last_point = points[-1]
|
||
|
points.append(last_point + dt * func(last_point))
|
||
|
if get_norm(last_point) > self.cutoff_norm:
|
||
|
break
|
||
|
line = VMobject()
|
||
|
step = max(1, int(len(points) / self.n_anchors_per_line))
|
||
|
line.set_points_smoothly(points[::step])
|
||
|
self.add(line)
|
||
|
|
||
|
self.set_stroke(self.stroke_color, self.stroke_width)
|
||
|
|
||
|
if self.color_lines_by_magnitude:
|
||
|
image_file = get_color_field_image_file(
|
||
|
lambda p: get_norm(func(p)),
|
||
|
min_value=self.min_magnitude,
|
||
|
max_value=self.max_magnitude,
|
||
|
colors=self.colors,
|
||
|
)
|
||
|
self.color_using_background_image(image_file)
|
||
|
|
||
|
def get_start_points(self,
|
||
|
x_min=-8,
|
||
|
x_max=8,
|
||
|
y_min=-5,
|
||
|
y_max=5,
|
||
|
delta_x=0.5,
|
||
|
delta_y=0.5,
|
||
|
n_repeats=1,
|
||
|
noise_factor=None):
|
||
|
if noise_factor is None:
|
||
|
noise_factor = delta_y / 2
|
||
|
return np.array([
|
||
|
x * RIGHT + y * UP + noise_factor * np.random.random(3)
|
||
|
for n in range(n_repeats)
|
||
|
for x in np.arange(x_min, x_max + delta_x, delta_x)
|
||
|
for y in np.arange(y_min, y_max + delta_y, delta_y)
|
||
|
])
|
||
|
|
||
|
|
||
|
class VectorField(VGroup):
|
||
|
CONFIG = {
|
||
|
"delta_x": 0.5,
|
||
|
"delta_y": 0.5,
|
||
|
"x_min": int(np.floor(-FRAME_WIDTH / 2)),
|
||
|
"x_max": int(np.ceil(FRAME_WIDTH / 2)),
|
||
|
"y_min": int(np.floor(-FRAME_HEIGHT / 2)),
|
||
|
"y_max": int(np.ceil(FRAME_HEIGHT / 2)),
|
||
|
"min_magnitude": 0,
|
||
|
"max_magnitude": 2,
|
||
|
"colors": DEFAULT_SCALAR_FIELD_COLORS,
|
||
|
# Takes in actual norm, spits out displayed norm
|
||
|
"length_func": lambda norm: 0.45 * sigmoid(norm),
|
||
|
"opacity": 1.0,
|
||
|
"vector_config": {},
|
||
|
}
|
||
|
|
||
|
def __init__(self, func, **kwargs):
|
||
|
VGroup.__init__(self, **kwargs)
|
||
|
self.func = func
|
||
|
self.rgb_gradient_function = get_rgb_gradient_function(
|
||
|
self.min_magnitude,
|
||
|
self.max_magnitude,
|
||
|
self.colors,
|
||
|
flip_alphas=False
|
||
|
)
|
||
|
x_range = np.arange(
|
||
|
self.x_min,
|
||
|
self.x_max + self.delta_x,
|
||
|
self.delta_x
|
||
|
)
|
||
|
y_range = np.arange(
|
||
|
self.y_min,
|
||
|
self.y_max + self.delta_y,
|
||
|
self.delta_y
|
||
|
)
|
||
|
for x, y in it.product(x_range, y_range):
|
||
|
point = x * RIGHT + y * UP
|
||
|
self.add(self.get_vector(point))
|
||
|
self.set_opacity(self.opacity)
|
||
|
|
||
|
def get_vector(self, point, **kwargs):
|
||
|
output = np.array(self.func(point))
|
||
|
norm = get_norm(output)
|
||
|
if norm == 0:
|
||
|
output *= 0
|
||
|
else:
|
||
|
output *= self.length_func(norm) / norm
|
||
|
vector_config = dict(self.vector_config)
|
||
|
vector_config.update(kwargs)
|
||
|
vect = Vector(output, **vector_config)
|
||
|
vect.shift(point)
|
||
|
fill_color = rgb_to_color(
|
||
|
self.rgb_gradient_function(np.array([norm]))[0]
|
||
|
)
|
||
|
vect.set_color(fill_color)
|
||
|
return vect
|
||
|
|
||
|
|
||
|
# TODO: Make it so that you can have a group of stream_lines
|
||
|
# varying in response to a changing vector field, and still
|
||
|
# animate the resulting flow
|
||
|
class ShowPassingFlashWithThinningStrokeWidth(AnimationGroup):
|
||
|
CONFIG = {
|
||
|
"n_segments": 10,
|
||
|
"time_width": 0.1,
|
||
|
"remover": True
|
||
|
}
|
||
|
|
||
|
def __init__(self, vmobject, **kwargs):
|
||
|
digest_config(self, kwargs)
|
||
|
max_stroke_width = vmobject.get_stroke_width()
|
||
|
max_time_width = kwargs.pop("time_width", self.time_width)
|
||
|
AnimationGroup.__init__(self, *[
|
||
|
ShowPassingFlash(
|
||
|
vmobject.deepcopy().set_stroke(width=stroke_width),
|
||
|
time_width=time_width,
|
||
|
**kwargs
|
||
|
)
|
||
|
for stroke_width, time_width in zip(
|
||
|
np.linspace(0, max_stroke_width, self.n_segments),
|
||
|
np.linspace(max_time_width, 0, self.n_segments)
|
||
|
)
|
||
|
])
|
||
|
|
||
|
|
||
|
# TODO, this is untested after turning it from a
|
||
|
# ContinualAnimation into a VGroup
|
||
|
class AnimatedStreamLines(VGroup):
|
||
|
CONFIG = {
|
||
|
"lag_range": 4,
|
||
|
"line_anim_class": ShowPassingFlash,
|
||
|
"line_anim_config": {
|
||
|
"run_time": 4,
|
||
|
"rate_func": linear,
|
||
|
"time_width": 0.3,
|
||
|
},
|
||
|
}
|
||
|
|
||
|
def __init__(self, stream_lines, **kwargs):
|
||
|
VGroup.__init__(self, **kwargs)
|
||
|
self.stream_lines = stream_lines
|
||
|
for line in stream_lines:
|
||
|
line.anim = self.line_anim_class(line, **self.line_anim_config)
|
||
|
line.time = -self.lag_range * random.random()
|
||
|
self.add(line.anim.mobject)
|
||
|
|
||
|
self.add_updater(lambda m, dt: m.update(dt))
|
||
|
|
||
|
def update(self, dt):
|
||
|
stream_lines = self.stream_lines
|
||
|
for line in stream_lines:
|
||
|
line.time += dt
|
||
|
adjusted_time = max(line.time, 0) % line.anim.run_time
|
||
|
line.anim.update(adjusted_time / line.anim.run_time)
|