3b1b-manim/mobject/vectorized_mobject.py

239 lines
7 KiB
Python
Raw Normal View History

2016-04-09 20:03:57 -07:00
from scipy import linalg
from .mobject import Mobject
from helpers import *
class VectorizedMobject(Mobject):
CONFIG = {
"closed" : False,
"fill_color" : BLACK,
"fill_opacity" : 0.0
}
## Colors
def init_colors(self):
self.set_stroke_color(self.color)
self.set_fill_color(self.fill_color)
return self
def set_fill_color(self, color):
self.fill_rgb = color_to_rgb(color)
return self
def set_stroke_color(self, color):
self.stroke_rgb = color_to_rgb(color)
def highlight(self, color):
self.set_fill_color(color)
self.set_stroke_color(color)
return self
def get_fill_color(self):
return Color(rgb = self.fill_rgb)
def get_fill_opacity(self):
return self.fill_opacity
def get_stroke_color(self):
2016-04-09 20:03:57 -07:00
return Color(rgb = self.stroke_rgb)
#TODO, get color? Specify if stroke or fill
#is the predominant color attribute?
## Drawing
def init_points(self):
##Default to starting at origin
self.points = np.zeros((1, self.dim))
return self
def start_at(self, point):
self.points[0] = point
return self
def close(self):
self.closed = True
return self
def open(self):
self.closed = False
return self
def is_closed(self):
return self.closed
def add_point(self, handle1, handle2, point):
self.points = np.append(
self.points,
[handle1, handle2, point],
axis = 0
)
return self
def set_anchors_and_handles(self, anchors, handles1, handles2):
assert(len(anchors) == len(handles1)+1)
assert(len(anchors) == len(handles2)+1)
total_len = 3*(len(anchors)-1) + 1
self.points = np.zeros((total_len, self.dim))
self.points[0] = anchors[0]
arrays = [handles1, handles2, anchors[1:]]
for index, array in zip(it.count(1), arrays):
self.points[index::3] = array
return self.points
def get_anchors_and_handles(self):
return [
self.points[i::3]
for i in range(3)
]
def set_points_as_corners(self, points):
if len(points) <= 1:
return self
points = self.close_if_needed(points)
2016-04-09 20:03:57 -07:00
handles1 = points[:-1]
handles2 = points[1:]
self.set_anchors_and_handles(points, handles1, handles2)
return self
def set_points_smoothly(self, points):
if len(points) <= 1:
return self
points = self.close_if_needed(points)
2016-04-09 20:03:57 -07:00
num_handles = len(points) - 1
#Must solve 2*num_handles equations to get the handles.
#l and u are the number of lower an upper diagonal rows
#in the matrix to solve.
l, u = 2, 1
2016-04-09 20:03:57 -07:00
#diag is a representation of the matrix in diagonal form
#See https://www.particleincell.com/2012/bezier-splines/
#for how to arive at these equations
diag = np.zeros((l+u+1, 2*num_handles))
diag[0,1::2] = -1
diag[0,2::2] = 1
diag[1,0::2] = 2
diag[1,1::2] = 1
diag[2,1:-2:2] = -2
diag[3,0:-3:2] = 1
diag[2,-2] = 1
diag[1,-1] = -2
2016-04-09 20:03:57 -07:00
#This is the b as in Ax = b, where we are solving for x,
#and A is represented using diag. However, think of entries
#to x and b as being points in space, not numbers
b = np.zeros((2*num_handles, self.dim))
b[1::2] = 2*points[1:]
b[0] = points[0]
b[-1] = points[-1]
solve_func = lambda b : linalg.solve_banded(
(l, u), diag, b
)
if self.is_closed():
#Get equations to relate first and last points
matrix = diag_to_matrix((l, u), diag)
#last row handles second derivative
matrix[-1, [0, 1]] = matrix[0, [0, 1]]
#first row handles first derivative
matrix[0,:] = np.zeros(matrix.shape[1])
matrix[0,[0, -1]] = [1, 1]
b[0] = 2*points[0]
b[-1] = np.zeros(self.dim)
solve_func = lambda b : linalg.solve(matrix, b)
2016-04-09 20:03:57 -07:00
handle_pairs = np.zeros((2*num_handles, self.dim))
for i in range(self.dim):
handle_pairs[:,i] = solve_func(b[:,i])
2016-04-09 20:03:57 -07:00
handles1 = handle_pairs[0::2]
handles2 = handle_pairs[1::2]
self.set_anchors_and_handles(points, handles1, handles2)
return self
2016-04-09 20:03:57 -07:00
def close_if_needed(self, points):
if self.is_closed() and not np.all(points[0] == points[-1]):
points = np.append(
points,
[points[0]],
axis = 0
)
return points
2016-04-09 20:03:57 -07:00
def set_points(self, points, mode = "smooth"):
points = np.array(points)
if mode == "smooth":
self.set_points_smoothly(points)
elif mode == "corners":
self.set_points_as_corners(points)
elif mode == "handles_included":
self.points = points
else:
raise Exception("Unknown mode")
return self
## Information about line
def get_num_points(self):
return (len(self.points) - 1)/3 + 1
2016-04-09 20:03:57 -07:00
def point_from_proportion(self, alpha):
num_cubics = self.get_num_points()-1
interpoint_alpha = num_cubics*(alpha % (1./num_cubics))
index = 3*int(alpha*num_cubics)
cubic = bezier(self.points[index:index+4])
return cubic(interpoint_alpha)
## Alignment
def align_points_with_larger(self, larger_mobject):
assert(isinstance(larger_mobject, VectorizedMobject))
anchors, handles1, handles2 = self.get_anchors_and_handles()
old_n = len(anchors)
new_n = larger_mobject.get_num_points()
#Buff up list of anchor points to appropriate length
new_anchors = anchors[old_n*np.arange(new_n)/new_n]
#At first, handles are on anchor points
#the [2:] is because start has no handles
new_points = new_anchors.repeat(3, axis = 0)[2:]
#These indices indicate the spots between genuinely
#different anchor points in new_points list
indices = 3*(np.arange(old_n) * new_n / old_n)[1:]
new_points[indices+1] = handles1
new_points[indices+2] = handles2
self.set_points(new_points, mode = "handles_included")
return self
2016-04-09 20:03:57 -07:00
def get_point_mobject(self):
return VectorizedPoint(self.get_center())
2016-04-09 20:03:57 -07:00
def interpolate_color(self, mobject1, mobject2, alpha):
attrs = [
"stroke_rgb",
"stroke_width",
"fill_rgb",
"fill_opacity",
]
for attr in attrs:
setattr(self, attr, interpolate(
getattr(mobject1, attr),
getattr(mobject2, attr),
alpha
))
2016-04-09 20:03:57 -07:00
class VectorizedPoint(VectorizedMobject):
CONFIG = {
"color" : BLACK,
}
def __init__(self, location = ORIGIN, **kwargs):
VectorizedMobject.__init__(self, **kwargs)
self.set_points([location])
2016-04-09 20:03:57 -07:00