2016-04-09 20:03:57 -07:00
|
|
|
from scipy import linalg
|
|
|
|
|
|
|
|
from .mobject import Mobject
|
|
|
|
|
|
|
|
from helpers import *
|
|
|
|
|
|
|
|
class VectorizedMobject(Mobject):
|
|
|
|
CONFIG = {
|
|
|
|
"closed" : False,
|
|
|
|
"fill_color" : BLACK,
|
|
|
|
"fill_opacity" : 0.0
|
|
|
|
}
|
|
|
|
|
|
|
|
## Colors
|
|
|
|
def init_colors(self):
|
|
|
|
self.set_stroke_color(self.color)
|
|
|
|
self.set_fill_color(self.fill_color)
|
|
|
|
return self
|
|
|
|
|
|
|
|
def set_fill_color(self, color):
|
|
|
|
self.fill_rgb = color_to_rgb(color)
|
|
|
|
return self
|
|
|
|
|
|
|
|
def set_stroke_color(self, color):
|
|
|
|
self.stroke_rgb = color_to_rgb(color)
|
|
|
|
|
|
|
|
def highlight(self, color):
|
|
|
|
self.set_fill_color(color)
|
|
|
|
self.set_stroke_color(color)
|
|
|
|
return self
|
|
|
|
|
|
|
|
def get_fill_color(self):
|
|
|
|
return Color(rgb = self.fill_rgb)
|
|
|
|
|
|
|
|
def get_fill_opacity(self):
|
|
|
|
return self.fill_opacity
|
|
|
|
|
2016-04-10 12:34:28 -07:00
|
|
|
def get_stroke_color(self):
|
2016-04-09 20:03:57 -07:00
|
|
|
return Color(rgb = self.stroke_rgb)
|
|
|
|
|
|
|
|
#TODO, get color? Specify if stroke or fill
|
|
|
|
#is the predominant color attribute?
|
|
|
|
|
|
|
|
## Drawing
|
|
|
|
def init_points(self):
|
|
|
|
##Default to starting at origin
|
|
|
|
self.points = np.zeros((1, self.dim))
|
|
|
|
return self
|
|
|
|
|
|
|
|
def start_at(self, point):
|
|
|
|
self.points[0] = point
|
|
|
|
return self
|
|
|
|
|
|
|
|
def close(self):
|
|
|
|
self.closed = True
|
|
|
|
return self
|
|
|
|
|
|
|
|
def open(self):
|
|
|
|
self.closed = False
|
|
|
|
return self
|
|
|
|
|
|
|
|
def is_closed(self):
|
|
|
|
return self.closed
|
|
|
|
|
|
|
|
def add_point(self, handle1, handle2, point):
|
|
|
|
self.points = np.append(
|
|
|
|
self.points,
|
|
|
|
[handle1, handle2, point],
|
|
|
|
axis = 0
|
|
|
|
)
|
|
|
|
return self
|
|
|
|
|
|
|
|
def set_anchors_and_handles(self, anchors, handles1, handles2):
|
|
|
|
assert(len(anchors) == len(handles1)+1)
|
|
|
|
assert(len(anchors) == len(handles2)+1)
|
|
|
|
total_len = 3*(len(anchors)-1) + 1
|
|
|
|
self.points = np.zeros((total_len, self.dim))
|
|
|
|
self.points[0] = anchors[0]
|
|
|
|
arrays = [handles1, handles2, anchors[1:]]
|
|
|
|
for index, array in zip(it.count(1), arrays):
|
|
|
|
self.points[index::3] = array
|
|
|
|
return self.points
|
|
|
|
|
|
|
|
def get_anchors_and_handles(self):
|
|
|
|
return [
|
|
|
|
self.points[i::3]
|
|
|
|
for i in range(3)
|
|
|
|
]
|
|
|
|
|
|
|
|
def set_points_as_corners(self, points):
|
2016-04-10 12:34:28 -07:00
|
|
|
if len(points) <= 1:
|
|
|
|
return self
|
|
|
|
points = self.close_if_needed(points)
|
2016-04-09 20:03:57 -07:00
|
|
|
handles1 = points[:-1]
|
|
|
|
handles2 = points[1:]
|
|
|
|
self.set_anchors_and_handles(points, handles1, handles2)
|
|
|
|
return self
|
|
|
|
|
|
|
|
def set_points_smoothly(self, points):
|
2016-04-10 12:34:28 -07:00
|
|
|
if len(points) <= 1:
|
|
|
|
return self
|
|
|
|
points = self.close_if_needed(points)
|
2016-04-09 20:03:57 -07:00
|
|
|
num_handles = len(points) - 1
|
|
|
|
#Must solve 2*num_handles equations to get the handles.
|
|
|
|
#l and u are the number of lower an upper diagonal rows
|
|
|
|
#in the matrix to solve.
|
2016-04-10 12:34:28 -07:00
|
|
|
l, u = 2, 1
|
2016-04-09 20:03:57 -07:00
|
|
|
#diag is a representation of the matrix in diagonal form
|
|
|
|
#See https://www.particleincell.com/2012/bezier-splines/
|
|
|
|
#for how to arive at these equations
|
|
|
|
diag = np.zeros((l+u+1, 2*num_handles))
|
|
|
|
diag[0,1::2] = -1
|
|
|
|
diag[0,2::2] = 1
|
|
|
|
diag[1,0::2] = 2
|
|
|
|
diag[1,1::2] = 1
|
|
|
|
diag[2,1:-2:2] = -2
|
|
|
|
diag[3,0:-3:2] = 1
|
2016-04-10 12:34:28 -07:00
|
|
|
diag[2,-2] = 1
|
|
|
|
diag[1,-1] = -2
|
2016-04-09 20:03:57 -07:00
|
|
|
#This is the b as in Ax = b, where we are solving for x,
|
|
|
|
#and A is represented using diag. However, think of entries
|
|
|
|
#to x and b as being points in space, not numbers
|
|
|
|
b = np.zeros((2*num_handles, self.dim))
|
|
|
|
b[1::2] = 2*points[1:]
|
|
|
|
b[0] = points[0]
|
|
|
|
b[-1] = points[-1]
|
2016-04-10 12:34:28 -07:00
|
|
|
solve_func = lambda b : linalg.solve_banded(
|
|
|
|
(l, u), diag, b
|
|
|
|
)
|
|
|
|
if self.is_closed():
|
|
|
|
#Get equations to relate first and last points
|
|
|
|
matrix = diag_to_matrix((l, u), diag)
|
|
|
|
#last row handles second derivative
|
|
|
|
matrix[-1, [0, 1]] = matrix[0, [0, 1]]
|
|
|
|
#first row handles first derivative
|
|
|
|
matrix[0,:] = np.zeros(matrix.shape[1])
|
|
|
|
matrix[0,[0, -1]] = [1, 1]
|
|
|
|
b[0] = 2*points[0]
|
|
|
|
b[-1] = np.zeros(self.dim)
|
|
|
|
solve_func = lambda b : linalg.solve(matrix, b)
|
2016-04-09 20:03:57 -07:00
|
|
|
handle_pairs = np.zeros((2*num_handles, self.dim))
|
|
|
|
for i in range(self.dim):
|
2016-04-10 12:34:28 -07:00
|
|
|
handle_pairs[:,i] = solve_func(b[:,i])
|
2016-04-09 20:03:57 -07:00
|
|
|
handles1 = handle_pairs[0::2]
|
|
|
|
handles2 = handle_pairs[1::2]
|
|
|
|
self.set_anchors_and_handles(points, handles1, handles2)
|
2016-04-10 12:34:28 -07:00
|
|
|
return self
|
2016-04-09 20:03:57 -07:00
|
|
|
|
2016-04-10 12:34:28 -07:00
|
|
|
def close_if_needed(self, points):
|
|
|
|
if self.is_closed() and not np.all(points[0] == points[-1]):
|
|
|
|
points = np.append(
|
|
|
|
points,
|
|
|
|
[points[0]],
|
|
|
|
axis = 0
|
|
|
|
)
|
|
|
|
return points
|
2016-04-09 20:03:57 -07:00
|
|
|
|
|
|
|
def set_points(self, points, mode = "smooth"):
|
|
|
|
points = np.array(points)
|
|
|
|
if mode == "smooth":
|
|
|
|
self.set_points_smoothly(points)
|
|
|
|
elif mode == "corners":
|
|
|
|
self.set_points_as_corners(points)
|
|
|
|
elif mode == "handles_included":
|
|
|
|
self.points = points
|
|
|
|
else:
|
|
|
|
raise Exception("Unknown mode")
|
|
|
|
return self
|
|
|
|
|
|
|
|
## Information about line
|
|
|
|
|
|
|
|
def get_num_points(self):
|
2016-04-10 12:34:28 -07:00
|
|
|
return (len(self.points) - 1)/3 + 1
|
2016-04-09 20:03:57 -07:00
|
|
|
|
|
|
|
def point_from_proportion(self, alpha):
|
2016-04-10 12:34:28 -07:00
|
|
|
num_cubics = self.get_num_points()-1
|
|
|
|
interpoint_alpha = num_cubics*(alpha % (1./num_cubics))
|
|
|
|
index = 3*int(alpha*num_cubics)
|
|
|
|
cubic = bezier(self.points[index:index+4])
|
|
|
|
return cubic(interpoint_alpha)
|
|
|
|
|
|
|
|
|
|
|
|
## Alignment
|
|
|
|
def align_points_with_larger(self, larger_mobject):
|
|
|
|
assert(isinstance(larger_mobject, VectorizedMobject))
|
|
|
|
anchors, handles1, handles2 = self.get_anchors_and_handles()
|
|
|
|
old_n = len(anchors)
|
|
|
|
new_n = larger_mobject.get_num_points()
|
|
|
|
#Buff up list of anchor points to appropriate length
|
|
|
|
new_anchors = anchors[old_n*np.arange(new_n)/new_n]
|
|
|
|
#At first, handles are on anchor points
|
|
|
|
#the [2:] is because start has no handles
|
|
|
|
new_points = new_anchors.repeat(3, axis = 0)[2:]
|
|
|
|
#These indices indicate the spots between genuinely
|
|
|
|
#different anchor points in new_points list
|
|
|
|
indices = 3*(np.arange(old_n) * new_n / old_n)[1:]
|
|
|
|
new_points[indices+1] = handles1
|
|
|
|
new_points[indices+2] = handles2
|
|
|
|
self.set_points(new_points, mode = "handles_included")
|
|
|
|
return self
|
2016-04-09 20:03:57 -07:00
|
|
|
|
|
|
|
|
2016-04-10 12:34:28 -07:00
|
|
|
def get_point_mobject(self):
|
|
|
|
return VectorizedPoint(self.get_center())
|
2016-04-09 20:03:57 -07:00
|
|
|
|
2016-04-10 12:34:28 -07:00
|
|
|
def interpolate_color(self, mobject1, mobject2, alpha):
|
|
|
|
attrs = [
|
|
|
|
"stroke_rgb",
|
|
|
|
"stroke_width",
|
|
|
|
"fill_rgb",
|
|
|
|
"fill_opacity",
|
|
|
|
]
|
|
|
|
for attr in attrs:
|
|
|
|
setattr(self, attr, interpolate(
|
|
|
|
getattr(mobject1, attr),
|
|
|
|
getattr(mobject2, attr),
|
|
|
|
alpha
|
|
|
|
))
|
2016-04-09 20:03:57 -07:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2016-04-10 12:34:28 -07:00
|
|
|
class VectorizedPoint(VectorizedMobject):
|
|
|
|
CONFIG = {
|
|
|
|
"color" : BLACK,
|
|
|
|
}
|
|
|
|
def __init__(self, location = ORIGIN, **kwargs):
|
|
|
|
VectorizedMobject.__init__(self, **kwargs)
|
|
|
|
self.set_points([location])
|
2016-04-09 20:03:57 -07:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|