mirror of
https://github.com/3b1b/manim.git
synced 2025-08-05 16:49:03 +00:00
139 lines
4 KiB
Text
139 lines
4 KiB
Text
![]() |
// This file is not a shader, it's just a set of
|
||
|
// functions meant to be inserted into other shaders.
|
||
|
|
||
|
// All of this is with respect to a curve that's been rotated/scaled
|
||
|
// so that b0 = (0, 0) and b1 = (1, 0). That is, b2 entirely
|
||
|
// determines the shape of the curve
|
||
|
|
||
|
vec2 bezier(float t, vec2 b2){
|
||
|
// Quick returns for the 0 and 1 cases
|
||
|
if (t == 0) return vec2(0, 0);
|
||
|
else if (t == 1) return b2;
|
||
|
// Everything else
|
||
|
return vec2(
|
||
|
2 * t * (1 - t) + b2.x * t*t,
|
||
|
b2.y * t * t
|
||
|
);
|
||
|
}
|
||
|
|
||
|
void compute_C_and_grad_C(float a, float b, vec2 p, out float Cxy, out vec2 grad_Cxy){
|
||
|
// Curve has the implicit form x = a*y + b*sqrt(y), which is also
|
||
|
// 0 = -x^2 + 2axy + b^2 y - a^2 y^2.
|
||
|
Cxy = -p.x*p.x + 2 * a * p.x*p.y + b*b * p.y - a*a * p.y*p.y;
|
||
|
|
||
|
// Approximate distance to curve using the gradient of -x^2 + 2axy + b^2 y - a^2 y^2
|
||
|
grad_Cxy = vec2(
|
||
|
-2 * p.x + 2 * a * p.y, // del C / del x
|
||
|
2 * a * p.x + b*b - 2 * a*a * p.y // del C / del y
|
||
|
);
|
||
|
}
|
||
|
|
||
|
// This function is flawed.
|
||
|
float cheap_dist_to_curve(vec2 p, vec2 b2){
|
||
|
float a = (b2.x - 2.0) / b2.y;
|
||
|
float b = sign(b2.y) * 2.0 / sqrt(abs(b2.y));
|
||
|
float x = p.x;
|
||
|
float y = p.y;
|
||
|
|
||
|
// Curve has the implicit form x = a*y + b*sqrt(y), which is also
|
||
|
// 0 = -x^2 + 2axy + b^2 y - a^2 y^2.
|
||
|
float Cxy = -x * x + 2 * a * x * y + sign(b2.y) * b * b * y - a * a * y * y;
|
||
|
|
||
|
// Approximate distance to curve using the gradient of -x^2 + 2axy + b^2 y - a^2 y^2
|
||
|
vec2 grad_Cxy = 2 * vec2(
|
||
|
-x + a * y, // del C / del x
|
||
|
a * x + b * b / 2 - a * a * y // del C / del y
|
||
|
);
|
||
|
return abs(Cxy / length(grad_Cxy));
|
||
|
}
|
||
|
|
||
|
float cube_root(float x){
|
||
|
return sign(x) * pow(abs(x), 1.0 / 3.0);
|
||
|
}
|
||
|
|
||
|
|
||
|
int cubic_solve(float a, float b, float c, float d, out float roots[3]){
|
||
|
// Normalize so a = 1
|
||
|
b = b / a;
|
||
|
c = c / a;
|
||
|
d = d / a;
|
||
|
|
||
|
float p = c - b*b / 3.0;
|
||
|
float q = b * (2.0*b*b - 9.0*c) / 27.0 + d;
|
||
|
float p3 = p*p*p;
|
||
|
float disc = q*q + 4.0*p3 / 27.0;
|
||
|
float offset = -b / 3.0;
|
||
|
if(disc >= 0.0){
|
||
|
float z = sqrt(disc);
|
||
|
float u = (-q + z) / 2.0;
|
||
|
float v = (-q - z) / 2.0;
|
||
|
u = cube_root(u);
|
||
|
v = cube_root(v);
|
||
|
roots[0] = offset + u + v;
|
||
|
return 1;
|
||
|
}
|
||
|
float u = sqrt(-p / 3.0);
|
||
|
float v = acos(-sqrt( -27.0 / p3) * q / 2.0) / 3.0;
|
||
|
float m = cos(v);
|
||
|
float n = sin(v) * 1.732050808;
|
||
|
|
||
|
float all_roots[3] = float[3](
|
||
|
offset + u * (n - m),
|
||
|
offset - u * (n + m),
|
||
|
offset + u * (m + m)
|
||
|
);
|
||
|
|
||
|
// Only accept roots with a positive derivative
|
||
|
int n_valid_roots = 0;
|
||
|
for(int i = 0; i < 3; i++){
|
||
|
float r = all_roots[i];
|
||
|
if(3*r*r + 2*b*r + c > 0){
|
||
|
roots[n_valid_roots] = r;
|
||
|
n_valid_roots++;
|
||
|
}
|
||
|
}
|
||
|
return n_valid_roots;
|
||
|
}
|
||
|
|
||
|
float dist_to_line(vec2 p, vec2 b2){
|
||
|
float t = clamp(p.x / b2.x, 0, 1);
|
||
|
float dist;
|
||
|
if(t == 0) dist = length(p);
|
||
|
else if(t == 1) dist = distance(p, b2);
|
||
|
else dist = abs(p.y);
|
||
|
|
||
|
return modify_distance_for_endpoints(p, dist, t);
|
||
|
}
|
||
|
|
||
|
|
||
|
float dist_to_point_on_curve(vec2 p, float t, vec2 b2){
|
||
|
t = clamp(t, 0, 1);
|
||
|
return modify_distance_for_endpoints(
|
||
|
p, length(p - bezier(t, b2)), t
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
float min_dist_to_curve(vec2 p, vec2 b2, float degree, bool quick_approx){
|
||
|
// Check if curve is really a a line
|
||
|
if(degree == 1) return dist_to_line(p, b2);
|
||
|
if(quick_approx) return cheap_dist_to_curve(p, b2);
|
||
|
|
||
|
// Try finding the exact sdf by solving the equation
|
||
|
// (d/dt) dist^2(t) = 0, which amount to the following
|
||
|
// cubic.
|
||
|
float xm2 = uv_b2.x - 2.0;
|
||
|
float y = uv_b2.y;
|
||
|
float a = xm2*xm2 + y*y;
|
||
|
float b = 3 * xm2;
|
||
|
float c = -(p.x*xm2 + p.y*y) + 2;
|
||
|
float d = -p.x;
|
||
|
|
||
|
float roots[3];
|
||
|
int n = cubic_solve(a, b, c, d, roots);
|
||
|
// At most 2 roots will have been populated.
|
||
|
float d0 = dist_to_point_on_curve(p, roots[0], b2);
|
||
|
if(n == 1) return d0;
|
||
|
float d1 = dist_to_point_on_curve(p, roots[1], b2);
|
||
|
return min(d0, d1);
|
||
|
}
|